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ABSTRACT OF THE DISSERTATION

Five Studies in Measurement and Psychophysics
by
Christopher William Doble
Doctor of Philosophy in Social Science
University of California, Irvine, 2002

Professor Bruce Berg, Chair

The studies reported in this work, which are rather diverse in character. are
linked by a common use of mathematics in the modeling of behavioral and phys-
ical phenomena. The first two studies report mathematical results which were
inspired by the modeling of the evolution of psychological “states™ —states of pref-
erence, states of knowledge. etc.—via stochastic processes on combinatoric struc-
tures. The first study details a mathematical investigation of particular types
of order relations dubbed ‘almost-connected orders,” which are shown to possess
properties which naturally suggest their incorporation into stochastic models of
preference evolution. The second study, inspired in part by practical problems in
the modeling of states of knowledge, briefly examines two approaches for system-
atically generalizing ‘partial orders.” The third study contains an investigation of
two measurement-theoretic properties of invariance, termed ‘meaningfulness’ and
‘dimensional invariance,” which have been used in the search for functions which

may be said to relate empirical variables in a “lawful” way. The fourth and fifth
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studies detail results derived from mathematical and empirical investigations of a
phenomenon in psychoacoustics called the ‘near-miss to Weber's law.” [t is shown
that the parameter estimates typically obtained for a customary model of this
phenomenon are inconsistent with a common averaging over experimental con-
ditions. giving an obvious warning against the use of the model. An alternative
model is shown to provide a good fit to well-known data and to data recently col-
lected in our laboratory. These latter data suggest a systematic covariation of the
parameters in the alternative model consistent with a “gain-control’ description

of auditory intensity discrimination.
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Introduction and Preview

Though the title of this work. “Five Studies in Measurement and Psvchophysics.”
may suffer from a certain lack of panache. it nonetheless convevs (perhaps im-
plicitly) the accurate notion that the studies reported in the work cover multi-
farious topics which may not be immediately linked. The studies. described in
five chapters. each meant for separate publication. touch upon diverse areas of
the behavioral sciences and the philosophy of science. If there is a common link
among the studies. it is that approaches to modeling in these areas have been.
historically. decidedly mathematical. The approach in this work is no different.
The first two chapters detail mathematical results motivated by work in the
modeling of the evolution of psychological “states™ via combinatoric structures.
For the work in Chapter 1. these states correspond to states of preference among
a finite set of alternatives. and the models belong to a class of stochastic models
formulated by Falmagne and colleagues (Falmagne. 1997: Falmagne and Doignon.
1997: Falmagne and Ovchinnikov 2002) and successfully applied by Regenwetter
et al. (1999) and Hsu et al. (to be submitted). In these models. preferences are

presented via orderings of the alternatives. and the evolution of preferences is
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depicted as a random walk on the orderings. Under very general axioms for these
random walks. strong results regarding the asymptotic behavior of the stochastic
processes may be derived (e.g.. Theorems 1-5 in Regenwetter et al.. 1999). Using
these results and the parameter estimates obtained from the application of these
models. one may be able to draw conclusions regarding the flow of information
effecting the relevant changes of preference.

Application of these models may entail the use of a particular tyvpe of order
relation called a "weak order’ (see Definition 1.3). Essentially a ranking of the
alternatives with ties allowed. a weak order is the order type elicited in opinion
polls which require respondents to give numerical ratings of cach alternative.
Such ratings are immediately coded as weak orders. and a model which assumes
a random walk on weak orders may naturally be applied to the data. Such a
model has been used. for instance. in the analysis of presidential election opinion
poll data (Regenwetter et al.. 1999: Hsu et al.. to be submitted).

Though respondents necessarily give weak order rankings when polled. it could
be that intermediate preference states. i.c.. the states between the polls. are less
constrained than weak orders. With this in mind. one might seek to classifv the
“bridge” relations between weak orders which could give plausible representations
of an individual's preference state. A goal of the mathematical study in Chapter
1 is to classify order relations which could be said to lie “between™ two weak
orders. that is. to classify the relations R such that " C R € 117, where W™ and

7 are weak orders such that 117 ¢ 7 with no weak order 117 that satisfies
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W c W" c W' It is proved in Theorem 1.15 that such an R must satisfy the

axiom
(1) if rRy and yRz. then rRuw or wR:

for all r. y, z. w in the ground set. Such relations are called in the Chapter
"almost connected orders.” or ac-orders.” because (1) is a natural generalization
of a connectedness condition. Chapter 1 contains an examination of ac-orders
and their relationship to other order relations. especially weak orders. It turns
out that everv ac-order is bracketed in a natural way by two weak orders (sce
Theorem 1.17 and Lemma 1.21). One of the weak orders. called the “contraction’
weak order. is the maximum in the set of weak orders included in the ac-order.
The other. called the "height” weak order. is minimal. but not necessarily the
minimuni. in the set of weak orders that include the ac-order.

Central to the formulation of the aforementioned models of preference evo-
lution are conditions involving movement from one uember of a family of order
relations to another member of the family. One strong condition. called “wellgrad-
edness” (Doignon and Falmagne. 1997). allows movement in an efficient manner:
a family F of relations on a set ) is well graded if. for anv relations 4. B € F
there exists a finite sequence of relations A = Fo. Fi.... . Faap = B in F such
that |F,_|AF| = 1. for ¢ = L.....]4AB] (where A stands for the svmmetric
difference between sets). It is shown in Theorem 1.29 that the family of all ac-
orders on a finite set ) is well graded if. and only if. |Y]| < 4. However. for

any finite Y. the family of all ac-orders on Y is necessarily "downgradable™: any
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nonempty ac-order on ) can be trimmed down by removing pairs one by ore.
until the empty order is reached. without ever leaving the family of all ac-orders
on Y (Theorem 1.32). Also. the family is "upgradable™: anv ac-order which is
not a linear order may be enlarged by adding pairs one by one. until a linear
order is formed. without ever leaving the family (Theorem 1.32). Such results
are important in the application of this family of relations to the random walk
models of preference evolution.

The second chapter also describes work motivated by the modeling of psveho-
logical “states.” this time with the states corresponding to states of knowledge.
Consider. for example. a situation in which a school official is to assess a stu-
dent’s mastery of an academic subject. such as high school algebra. One way
to describe the student’s mastery is to associate with the student a subset of
the set of all tvpes of high school algebra problems. with the subset—called the
student’s “knowledge state” —corresponding to the problems that the student is
able to solve. As the student learns. the subset necessarily changes. expanding
as the student’s knowledge of the subject expands. The mathematical underpin-
nings of such a situation are well studied in Doignon and Falmagne (1999). Their
work (along with the work of several others: see Doignon and Falmagne. 1999 for
references) has resulted in the development of successful. on-line. assessment and
istructional systems for several academic subjects.

A kev compouent of these assessment and instructional syvstems is an under-

Iving structure of problems and their prerequisite problems. This structure mav
ying I \
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be represented by a family K of subsets of a finite set Q. The elements of Q.
which correspond to the problems to be mastered. are called items. and members
of K are called states. An important practical issue is the construction of such a
structure. that is. the construction of a plausible family I which gives states that
a student may occupy on the way to mastery of the academic subject. Since this
family may be too large to be listed explicitly. it often is arrived at indirectly. via

experts’ respouses to questions of the form

If a student has failed to solve all of the problems in the set A. will

she also fail to solve problem q?

for all nonempty subsets A of Q. and all items ¢ in Q. The respouses define a
relation P from 29\ {0} to Q. with the pair (A.¢) being in the relation precisely
when the response to the above question is “Yes.” A family ' of subsets of Q

may be derived from P by the equivalence

(2) KeK << VA qgeP: ANK=0=q¢ R).

[f only singletons A are used. then the family K’ correspouds (after a recoding)
to a partial order on the items in Q. (This result is due to Birkhoff. 1937.) Such
a family has the property that each item is contained in a unique minimal set. or
‘background.” of K'. Thus. if the original family £ contains an item with more
than one background. then a relation P containing only singletons A will not
‘recover” IC. in that K’ will not equal K (sce Definitions 2.2).

The work in Chapter 2 is motivated by the following questions: If the original

5
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family K has items with more than one background. what can be said about

relations P which recover K? In particular. what can be said about

k= min max{fd|:(d.q) € P}?

P recovers K

Does k always equal the maximum number of backgrounds in K. as it does
when this number is one? Answers to such questions develop a link between the
querving of experts and the types of structures which may be recovered from
this querving. This link has obvious practical implications. In addition. the link
may allow a systematic. mathematical generalization of partial orders. with the
generalization following a progression from families whose items have at most
one background (i.e.. partial orders) to families whose items have 2.3.4.... .n
backgrounds. Chapter 2 contains results which specify this link.

Chapter 3 comprises a measurement-theoretic investigation of two properties
of invariance of possible scientific laws. It is standard to require that scientific
laws be invariant in form under certain transformations of the relevant objects.
especially transformations involving equivalent representations of the objects us-
ing different measurement scales (see e.g. Narens, 2002). Of course. terms such
as “invariance.” “form.” and “scientific law” are inexact and should be defined
carefully. The definitions used in Chapter 3 follow closely those of Falmagne and
Narens (1983). and these authors’ terms are used for the two tyvpes of invariance
considered in the chapter. namely. ‘meaningfulness” and “dimensional invariance’
(see Definitions 3.5 and 3.6). The main result of the chapter. which gives insight
into the relationship between the two formulations of invariance. generalizes a re-

6
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sult by these authors. The generalization lies in the types of transformations for
which invariances are considered. It is common in the measurement literature for
invariances to be considered for changes in representation of the variables giving
the results of measurement. i.e.. for certain strictly increasing. surjective transfor-
mations that act individually on the variables. However. it turns out that there
are important cases in which invariance holds under transformations that are not
‘factorizable.” that is. under transformations that cannot be written as functious
on separate variables. The Lorentz transformation in physics is an example. It
turns out that. in the general setting considered in Chapter 3. extensions of Fal-
magte and Narens™ invariance formulations stand in the same relationship as in
the original setting. namely. the two formulations are equivalent under a natural
condition relating members of the family of functions under consideration (see
Definition 3.10 for this condition).

The two formulations are independent. however. and there exist phvsical laws
which satisfv meaningfulness but not dimensional invariance (see Example 3.1).
Examinations of physical laws which are not dimensionally invariant. of whether
these laws allow associated formulations which are dimensionally invariant. and
of how those associated formulations are obtained are examined briefly. These
examinations suggest the use of dimensional invariance beyond the typical use in
classical physics. i.e.. bevond the method of dimensional analysis.

This study of invariance is motivated by the characterization of functions

which may be said to relate cmpirical variables in a “lawful™ wav. Such a charac-

-1
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terization is sought via examination of putative invariances of the measurement
theories of the variables. which may greatly constrain the possible forms of empir-
ical laws (e.g.. Luce. 1959, 1964. 1990: Luce et al.. 1990: Osborne. 1970: Falmagne
and Narens. 1983; Aczél et al.. 1986: Kim. 1990). Even if a relation is consid-
ered lawful. though. care must be taken in applyving the relation as a model of
an empirical situation involving further invariance. For instance. in modeling
certain psvchophysical data. an important but perhaps overlooked invariance is
robustness of the model to averaging—-averaging over subjects. over experimen-
tal trials. over experimental conditions. ete. (See. for example. Heathcote et al..
2000.) Considerations of robustness to averaging may help eliminate candidate
models which otherwise seem appropriate. as illustrated by the following example.
the detailed discussion of which comprises much of Chapter .

The power law. ubiquitous in psvchophysical modeling. has been used to
describe many data which deviate from Weber's law (cf. Baird and Noma. 1978).
Weber's law holds when the ratio A%’- is constant. where A(r) is the smallest
perceptible positive difference between two stimuli with intensities r and r+ A(r)
(Fechner. 1860). In many empirical situations. including judgments of line lengths
(Guilford. 1932: Hovland. 1938). discriminations of light intensities (Mansfield.
1976). and discriminations of pure-tone intensities (e.g. Schacknow and Raab.
1973: Penner et al.. 1974; Jesteadt et al.. 1977: Green et al.. 1979: Hanna et al..

- . . A . . .
1936: Viemeister and Bacon. 1988). the fraction (T[) decreases with increasing -
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in such a way that the model
(3) A(r)y=Cr"

provides a good fit to the data., with estimates of a typically less than 1 and
greater than about .5. This has been termed the "near-miss to Weber's law.’
since Weber's law holds when a = 1 (McGill and Goldberg. 1963a.b).

Since the definition of A(r) as the “smallest perceptible positive difference” is
ambiguous. it is helpful to make explicit reference to the criterion for discrimina-
tion. To this end. let &, () be the stimulus intensity judged greater than intensity
r with probability exactly equal to v. and let A, (r) = &,(r) — r (cf. Luce and
Galanter. 1963: Falmagne. 1983). With this notation. Weber's law is expressed

by the equation
(4) A(r)=C(v)r.

in which the constant of proportionality ('(v) is strictly increasing with v. Values
adopted for the discrimination criterion v typically fall between .70 and .30, with
no universal convention (cf. McGill and Goldberg. 1968a.b: Schacknow and Raab.
1973: Penner et al.. 1974: Jesteadt et al.. 1977: Green et al.. 1979: Hanna et al..
1986: Viemeister and Bacon. 1988: Schroder et al.. 1994: Neff and Jesteadt. 1996).

Equation (3) may then be written as

to indicate the possible dependence of C' and a on v.
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As a standard practice in psychoacoustic (and other psychophysical) intensity
discrimination experiments. data are averaged over order of stimulus presentation
in a two-alternative. forced-choice task (or over position in a visual discrimination
task). This averaging enforces a particular condition. called by Falmagne (1985)
the balance condition. on the function £,. The balance condition is equivalent to

the equation

(6) Sl =1

holding for all intensities r and all criteria  such that 0 < v < 1. It is proved
in Chapter 4 that the invariance given by (6) imposes a powerful mathematical
constraint on the values for the exponent a in the near-miss equation given by
(5): under the balance condition. the exponent a(v) in (5) necessarily equals 1
for all v (see Theorem 4.1). For the many data which give an estimate of a less
than one. the model clearly is not appropriate. Thus. considerations of invariance
imposed by averaging help eliminate a popular model of deviations from Weber's
law.

[t turns out. though. that not all power function models share such severe
mathematical constraints on their parameter values under this averaging. In
particular. one model which is not so severely counstrained. vet provides a good
fit for many intensity discrimination data. presents £, as a power function. i.c..

s
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in which 3(v) > 0 and KA’ (v) > 0 are parameters that may depend upon the value
v of the criterion. Chapters 4 and 5 contain several empirical and theoretical
results pertaining to this model. the most important of which may be that the
exponent J(v) in Eq. (7) varies with the discrimination criterion v. This result
indicates that the value of the near-miss exponent depends on the definition
of “just-noticeable” in the estimation of r + A(r). This should be a caution
against regarding the exponent as a critical aspect of neural coding of acoustic
intensity. as has been the tendency in the near-miss literature (cf. Falmmagne.
1935: see Viemeister. 1972: Schacknow and Raab, 1973: Moore and Raab. 1974:
Penner et al.. 1974: Jesteadt et al., 1977: Green et al.. 1979: Hanna et al.. 1936:
Florentine. 1986: Viemeister and Bacon. 1983: Schroder et al.. 1994: Gallégo and
Micheyl. 1998). It also is argued. in Chapter 5. that the near-miss model (7) may

be specialized into the submodel

(8) &.(r) _ (i).i(u)‘
-3

with r, and y. parameters that specify the function A'. that is. N(v) = r.7 ..

This submodel has an important. fixed-point property: for all values of v. the
point (r.&,(r)) = (r..y.) satisfies Eq. (8). Furthermore. the empirical estimates
of r, and y. reported in the study in Chapter 5 are nearly identical for a given
listener and condition. with the values corresponding to a large magnitude (105-
128 dB SPL). These fixed point estimates and the form of the model specified
by Eq. (8) suggest that experimental sound intensities are subjectively evaluated
with respect to a high intensity situated at or near the top of the normal range of

11
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hearing. This interpretation is consistent with Parker and Schneider (1994). who
propose a subjective ‘gain control” mechanism which allows the listener to adjust
amplification (or attenuation) in the presence of softer (or louder) sounds for
improved discriminability (see also Schneider and Parker. 1990). These results.
which point to a marriage between quantitative and qualitative descriptions of
empirical phenomena. demonstrate the potential power of mathematical model-
ing. a theme which links the five studies in this dissertation.

The studies are now presented in full detail.
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Chapter 1

Almost Connected Orders

Individual preferences in opinion polls are often elicited as asvimmetric weak
orders. i.c.. as rankings of the options that allow ties. A respoudent’s ranking
may change from one poll to the next in a more or less svstematic way which
could involve intermediate states of mind that connect his or her responses in
the successive polls.  Allowing for the possibility that such states mav be less
constrained than weak orders. several questions arise. For example. what can be
said about relations lving between two weak orders? A specific setting for this
question occurs when 1" and 117 are asymmetric weak orders on a set ). and
" W7 with no weak order 1™ that satisfies 11~ C 11 < 117, What kind of
relation R satisfies 11" C R C 1177 Any such R must be asvmmetric because 17
is asymmetric. Less obviously. R must satisfv the semiorder axiom which savs

that

(1.1) if rRy aud yRz. then rRw or wR:

13
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forall r. y. z. win Y. But R need not be a semiorder (see Theorem 1.15) because
it can violate the semiorder axiom which says that if rRy and zRw. then rRw
or :Ry.

This paper is devoted to a studv of asymmetric relations that satisfv (1.1)
and their relationship to weak orders. We refer to such a relation as an “almost
connected order.” or “ac-order.” because (1.1} is a natural generalization of a con-
nectedness condition (cf. Remark 1.4(b)). Other names have been used for (1.1)
and its asvmmetric offspring. Chipman (1971) refers to (1.1) as “semitransitivity.”
as do Fishburn (1997) and Fishburn and Trotter (1999). Monjardet (1978) refers
to asymumetric relations that satisfv (1.1) as ‘S-relations.” and Fishburn (1935)
calls them "partial semiorders.”

The paper recalls previous results and establishes a number of new results
for almost connected orders. We prove that every ac-order R is bracketed in a
natural way by weak orders R and R" such that [ is maximum in the set of
weak orders included in R. and R" is minimal. but not necessarily minimum.
in the set of weak orders that include R. We show that the family of ac-orders
on a set Y is not well graded (in the sense of Doignon and Falmagne. 1997) if
[V} > 1. However. we prove that every nonempty ac-order R contains a covering
pair ¢ = (r,y) such that R\ {¢} is also an ac-order on the same set. Similarly.
we show that. for every ac-order R that is not a chain. there is an € = (r.y) not

in R such that RU {c} is an ac-order.

14
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Some of our results are related to recent work by Trenk (1998) and Gimbel

and Trenk (1998). Connections to their work are noted.

1.1 Basic Concepts and Preparatory Results

Definition 1.1. Except where indicated otherwise. all relations are on a basic
finite set ). Strict and non-strict inclusions are denoted by C and C. respectively.
The ordered pair (r.y) € YV x Y is abbreviated as ry. A pair ry in a relation
S is called a covering pair if there is no : in ) such that rS:Sy (which is an
abbreviation of *rS: and :Sy’). In such a case. we may also sayv that y covers r.

The product of two relations S and T is defined by
ST = {ry|3: € Y.rSz and :Ty}.

We write S! = S, and for any integer n > 1. §"*! = §S*. For any relation S
on Y. we denote the identity on Y by SY. and we use S~!' to mean the relation
{yr|rSy}. The complement S of a relation S is in reference to the ground set Y.
namely. § = (Y x Y)\ S. We use the formulas Sy and =(rSy) interchangeably.

The transitive closure of a relation S is the union

(1.2) S=ux,s"

(Thus. S is not necessarily reflexive.)
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Definition 1.2. A relation R on Y is called an almost connected order or ac-
order on Y if it satisfies the following two properties:

[AS] RCR!.

[C2] RRR™'CR.

Thus. an ac-order is an asymmetric relation satisfving also [C2]. which is one
of the standard axioms for semiorders (cf. Definition 1.3). Note that [C2] is a
compact way of writing (1.1). We comment on the 2" in [C2] in Remark 1.4(b).
Throughout the paper. we write A for the set of all ac-orders on Y.

Examples and counterexamples for ac-orders are displaved in Figure 1.1 by
their Hasse diagrams (see Examples 1.5 below). Note that any asvmmetric re-
lation R satisfving RR = @ is an ac-order since Condition {C2] holds vacuously.
On the other hand. it is easily shown that anv ac-order is necessarily irreflexive
and transitive (cf. Proposition 1.6 (i) and (ii)). that is. such a relation is a (strict)
partial order or poset.

We also introduce three well-known classes of relations closely related to ac-
orders.

Definition 1.3. .\ (strict) weak order on a set Y is a relation 11" on )} which is

asymmetric (thus. [AS] holds) and also satisfies

[C1] wi-tcIr

More explicitly. 117 is a weak order if for all r. y and = in Y.
oy = [yWr and (o172 or 2107y)].

16
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Any weak order is an ac-order (cf. Remark 1.8). Posets are said to be proper if

thev are not weak orders. A semiorder is an ac-order satisfving the biorder axiom
[BI] Wb cw

(see Luce. 1956: Ducamp and Falmagne. 1969: Fishburn. 1971. 1975: Doignon

et al.. 1984).

Remarks 1.4. (a) It is well known (cf. Krantz ct al.. 1971: Roberts. 1979) that
a relation 11" on an arbitrary set is a weak order if and only if there exists a
mapping f of (). I1") into a strict linear order (X', <) such that. for all r.y € V.
Wy & flr) < fy).

(b) Notice that [C1] and [C2] are two instances of a class of “connectedness’

conditions. differing by the value n of the exponent in the formula
[Cn] R'RT'CR.

Conditions [C1] and [C2] arise when n = 1 and n = 2. respectively. while [CO]
means R~ C R (because R” denotes the identity on Y). that is. R is connected
in the usual sense. This explains the term “almost connected” given to relations
satisfving [C2].

(c) Soure noteworthy results regarding ac-orders have been obtained. For
example. Fishburn (1935) showed that the product of any two ac-orders is a

semiorder. and Fishburn and Trotter (1999) pointed out that not only the (order)

dimension in the sense of Dushnik and Miller (1941). but also the semiorder

17
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dimension and the interval order dimension of finite ac-orders. are unbounded.
Skandera (2000) recently gave a characterization of ac-orders in terms of their
‘antiadjacency’ matrices.

(d) Treuk (1998) and Gimbel and Trenk (1998) present a generalization of
weak orders which they call A-weak orders. Any ac-order is I-weak (cf. Trenk.
1998. Theorem 17). but there exist 1-weak orders which are not ac-orders. the sim-
plest being our example (g) in Figure 1.1 (cf. Trenk. 1998. Proposition 14). Trenk
(1998. Theorem 19) also gives a characterization of l-weak. totally bounded
bitolerance orders.” and we note that some proper ac-orders are totally bounded
bitolerance orders. such as the one in Example (c) of Figure 1.1. and others are

not. such as the ‘standard example of a n-dimensional poset” for. say. n = 3 (sce

Trotter, 1992).

Examples 1.5. Throughout the paper. we represent the ordered pair ry by an
edge going down from y to r. (Thus. the relation in Figure 1.1. Example (d)
includes the pairs 21. 41. 83. etc.) Example (a) is borrowed from Fishburn (1985).
[t is a semiorder. a special case of an ac-order (cf. Remark 1.8). Example (b) is
a weak order. Examples (¢) and (d) are ac-orders which are neither semiorders
nor weak orders. Each of Examples (f) and (g) satisfies exactly one of the two
axioms [AS] and [C2] of ac-orders. The failing axiom is indicated at the bottom

of each graph. Neither of Examples (¢) and (h) is an ac-order.

Siuce all of the results in the proposition below are either known (see Chipman.
1971: Monjardet, 1978) or immediate. we omit the proof.

18
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Examples

(a) (b) (c) (d)
. .
//$\//\ ///A\\\ ///’\\\ //}T\\\

(e) (f) (g) (h)

%
®
e— o —e
°
.

o —o—»
®

(AS] [€2]

Figure 1.1: Examples and counterexamples of ac-orders represented by their

Hasse diagrams.

Proposition 1.6. If R is an ac-order on Y. then
(i) R is irreflexive:;

(ii) R is transitive:

19
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Definition 1.7. For any weak order 11" on }. we write ~y;-. or more simply ~
when no ambiguity can arise. for the equivalence relation induced by 1" on Y:
that is. r ~y y if and only if ~(r¥Vy) and ~(y¥1°r). Any element of the partition
of Y induced by ~yy- is called an (equivalence) class of 1V". The particular class
of W’ containing some r € ) is denoted by [}y (or more simply by [z]). If C
and D are two classes of 11", we say that D covers C' (for 117) if for all r € C' and
y € D. we have £’y and —~(r11H7y).

\We apply the concept of covering pair to the inclusion relation for the weak
orders in the collection W of all the weak orders on ). More precisely. for any
two LI € W, we say that (H7H") is a covering pair when 117 C 117 and there

isno 7”7 € W such that 11" 1T C 117,

Remark 1.8. All linear orders. weak orders. and semiorders are ac-orders. which
themselves are posets. Writing £. S and P. respectively. for the classes of linear

orders. semiorders and posets on Y. we have actuallv
(1.3) LCWCSCACP.
with all four inclusions strict if |Y] > 4.

As the facts gathered in the next two lemmas are common knowledge. we

omit the proofs.

20
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Lemma 1.9. Suppose that W~ is a weak order on Y.

(i) If C is a class of W and {C.Cy} a partition of C'. then the relation
S =WuU(Cy x Cy) is a weak order. The sets C; and Cy are classes of S. with
(' covering Cy in the sense of Definition 1.7.

(ii) Conversely. if both Cy and Cs are classes of W, with C'y covering C'. then

the relation T = 11"\ (C} x (3) is a weak order and C; UC> is a class of T.

Lemma 1.10. Let 11" and 11”7 be two weak orders on Y and suppose that 11" C

W’ For anv r € Y. we write

Ll={yeYly~wr} and [z ={yeVly~n 1}

Then. there exist s.t in Y such that

(i) s~y t:

(i) <117t

(iii) there is no = € Y such that sWW7'z117¢.

Morcover. if (W, W) is a covering pair (cf. Definition 1.7). then

(iv) {[s]".[t]'} is a partition of [s] = [t]:

(v) W =W uU([s] x [t]'): thus. [t]' covers [s]' for T1".

The next definition and theorem recall a standard concept and apply it in our

context.
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Definition 1.11. For any relation S. we denote by ||s the incomparability rela-

tion of S: thus. for all r and y in Y.
rllsy <= (rSyand ySr).

When no ambiguity can arise. we abbreviate ||s as ||. We mayv also write r ||
{ri.ra....} tomean || ry, r || ry. ... and use other self explanatory shorthand
notation.

We recall from (1.2) that H denotes the transitive closure of ||. It is clear that
the traunsitive closure of the incomparability relation of an irreflexive relation on
a set is an equivalence relation on that set. In particular. ﬂp iy an equivalence

relation on )Y for any poset P on ).

Theorem 1.12. A poset P on Y is a weak order if and onlv if ﬂ =||. Thus. a

poset P is proper if and only if there exists at least one class C' of the partition

of Y induced by || such that rPy for some r.y € C'.

We omit the proof.

Definition 1.13. Let P be a proper poset on V. Any class ' of the partition
induced by ||p satisfving the condition of Theorem 1.12 is called a critical class

of P. A pair ry in P such that r and y belong to the same critical class is called

a critical pair of P.

Remark 1.14. (a) By definition. any proper ac-order has at least one critical

class. Example (d) in Figure 1.1 displays the Hasse diagram of a proper ac-order

(V]
o
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on a set of 8 points. The reader can verifv that the induced equivalence relation
has two classes. {1} and {2.....8}. The latter is the only critical class of the

ac-order.

(b) Trenk (1998. Proposition 6) describes Algorithm Stackem which acts on
a poset and produces a partition of the ground set by identifving “inseparable’
induced suborders. When applied to a poset P. this algorithm induces the same

partition as does the equivalence relation ||p.

We now turn to the first question raised in our introduction.

1.2 What Relation Can Be Squeezed Between

Two Weak Orders ?

Theorem 1.15. Let .Y be two weak orders forming a covering pair. [f1 C
R C W’ then R is an ac-order. Moreover,

(1) R has a single critical class Cy U Cy. with C'p < Cy = W7\ I

(i) - ClrC [lre =

(ili) RRO|p = 0.

Converselv, anyv ac-order R with a single critical class and such that (iii) holds
satisfies W C R C W for some covering pair (W) of weak orders. Such a
pair (W17 is unique iff any element of the critical class appears in some critical

pair of RR.
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PROOF. Since 11" is asymmetric and R C 117 by hvpothesis. R must also be

asymmetric. Let s and ¢ be as in Lemma 1.10 and set C', = [s]' and (', = [t]":

thus.
(1.4) B =1 u(C x ().
(L.5) O£ R\ CC xCs.

We prove that R satisfies [C2]. Suppose that

(1.6) rRy. yRz. and ~(wR:z).
We have to establish rRuw. Since 11" C R. (1.6) implies
(L.7) =(wll’z).

If both r1l'y and y¥i"z also hold. then rii"w because 11" is an ac-order. and so
rRuw because 11" C R by hypothesis. Thus. we suppose that either =(r1"y) (Case
1). or =(yll"z) (Case 2).

Case 1. If =(rWy). then rRy implies ry € R\ W vielding ry € C, x (5
by (1.5). We cannot have yz € C) x (' because (', NCy, = B. Thus. yR: leads
to yH z. which together with (1.7) and the fact that ™ is a weak order. vields
yH . Since 117 is a weak order. we have either ri w or yil'r. But yil'r together
with rRy would give yli”"r and rit”y. contradicting the asymmetry of 117 (as a
weak order). We obtain thus ritw. and so rRuw.

Case 2. The argument follows the same pattern. Suppose that —(yfi'z).
Because yR:z. this implies yz € (') x (., and we cannot have also ry € C, x (.

24
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because C; N Cy = 0. Thus £Ry implies r1}’y. which gives i’y or rii"w. But
wil’y and —~(wlV'z) (cf. (1.7)) give z11"y. which together with yRz would give
zI1”"y and yW”z. contradicting the asymmetry of 11”. We obtain 11 w. and so
rRuw. as asserted.

Proof of (i). Because the inclusion in (1.5) is strict. there exists zur € Cy x ('
such that =(zRuw). and also —(wRz) (otherwise 1w and wiV”z. contradicting
the asymmetry of 11”). Thus. z ||g w holds. with z € C} and w € (4. For
any r.y € . with { = 1 or i = 2. we have r ||g y since cach of Cy and C’ is
an cquivalence class of 17 and R € 7. Also. if r € C'y and y € C. we have
Irllgzllgr wllg y- Thus. for anv r.y € Cy U Cs we have rﬂ;w. and so CLuCy is
an equivalence class of ﬂ r which is a critical class of R because. by (1.5). we have
RN(Cy x Cq) # 0. It is in fact the only critical class of R. Indeed. suppose that
rﬂny: then. for some sequence r = ry.... .r, = y. we have r, || r,.;. and thus
also r, flw ro1. 1 <0 < n. By the transitivity of |y, this gives r |li- y. vielding
=(rH’y). Using (1.5). we have rRy only if ry € C| x (.

Proof of (ii). The hypothesis 11" C R C W implies [[s+C||rClli-. and neither
of the inclusions can be an equality because R is not a weak order (cf. Theorem
1.12). Turning to the equality “R =|lyy-. suppose that J‘”R!/. We must have then
either r ||r y. and so x ||y y (because 11" C R). or xy € “Rﬂ (RURY). This last
case subdivides into two subcases. If ry € “R N R. then there cxists a sequence
L =1rIp...... r, = y such that r, |g r,o;. and thus r, [y 1. for 1 < i < n.

This vields » |Ji- y by transitivity. The other subcase ry € ﬂn N R~ follows by

8
ut
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symmetry. This proves that HR Cllw. Conversely. if r |li y. then either r ||gr y
or ry € C'y x C'y: thus rﬂgy in both cases since by (i). (", U is an equivalence
class of HR-

Proof of (iii). Suppose that r(RRN ﬂR)y. Since R is transitive by Proposition
1.6(i1). we get £(RN ﬂR)y. which implies that r and y belong to the single critical
class of R (cf. (i) above). Thus. ry € C, x Cs. which together with rRRy
contradicts the fact that Cy covers ('} (see Lemma 1.10(v)).

We leave the converse to the reader. a

Next. we consider an arbitrary ac-order R and we ask: what are weak orders
I and 117 such that 11" C R ¢ W7, with 11" maximal (or maximum) and 1~
minimal (or minimum)? Our results in the next two sections transcend ac-orders

and apply in fact to general posets.

1.3 Contraction of a Poset

Definition 1.16. We define the (weak order) contraction of a poset P by the

formula
(1.8) P=r\|.

where || denotes the transitive closure of the incomparability relation || of . (We

thus abbreviate the notation of ||p and ||p.)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Note that we have P = P if P is a weak order: in such a case. we have ﬂ = ||
and PN ﬂ = (. When P is not a weak order. however. P is a proper subset of P.
In the next few pages. we investigate the properties of such a contraction.

These concepts apply to ac-orders. which are a special case of posets
(cf. Proposition 1.6(i)-(ii) and Remark 1.8). We first give an example of a partic-
ular ac-order R and its contraction R. These relations are represented by their
Hasse diagrams in Figure 1.2 (ignore the relation R* for the moment: cf. Definition
1.19). In this example. the ac-order R has a single critical class C' = {a.b.c.d}.
the transitive closure ﬂR of the incomparability relation of R has three equivalence

classes. and we have

R=R\ ({c.d} x {a.b}).

R R R"
e e
PZANN SN /N
// / \\ , 4 \\ b e \ N b
ae ¢ /Od “eb a T T a T><
\\ / l// ce od ce od
\\ / N / \\
. S/ NS
('Y )

Figure 1.2: An ac-order R. its contraction R. and its height weak order R". all
represented by their Hasse diagrams (cf. Definitions 1.16 and 1.19).
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Theorem 1.17. The contraction P of a poset P is a weak order. which is the
maximum of all those weak orders included in P. Moreover. ||p coincides with the
equivalence relation induced by the weak order P: hence. all the critical classes

of P (if any exist) are equivalence classes of P.

Obviously. P may have equivalence classes which are not critical classes of P.
Also. if P has no critical classes. then P = P (cf. Theorem 1.12).

PrROOF. The definition of P logically implies ||p = ﬂ Uil= ﬂ Thus. the
equivalence relation ﬂ coincides with the incomparability relation of P. and since
any critical class of P is an equivalence class of the partition induced by H it is
also an cquivalence class of |jp.

We show that P is a weak order. Note that P is asviunetric. since P is. Note
also that P is transitive. Indeed. if J'Py[":. then £P: because PP C PP C P.

This gives =(zr) by the asvmmetry of P. We have thus either rPz or r ||p .

In the latter case. there exists a sequence ry = r. ry. ... . Ir,.; = > such that
ro || oy |l -.. || £a=1. Note that we cannot have ry ||p y. because together with

ro || ry. this would give r {|p y. contradicting rPy. We have thus either x| Py or
yPry. If the latter holds. then rP.r, by transitivity of P. contradicting rg || ry.
So. we obtain r{Py. By a similar argument. we obtain r+Py. r3Py. ... . raPy.
giving r, PyP=. But this leads to r, P=. which contradicts r, 'z, Thus. it is
impossible that r ! z. so rPyP= implies rPz.

We now prove that anyv weak order ™ included in P is also included in P.

Assume o117y, We have thus also o+ Py. If ry is not a critical pair of P. then

o
o0
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Iy ¢ ﬂ, vielding ry € P = P\ ﬂ Accordingly. let ry be a critical pair of P. that
is. (PN ﬂ)y. This implies that there must be a sequence ry = r. 9. ... . I, =y
such that r, || r;y) for 1 < ¢ < n. Since 1”7 C P by hypothesis. we also have
I, |lwr Lep for 1 < ¢ < n. which implies r ||y~ y. contradicting our hypothesis
that rll”y. We conclude that any ry € 11" C P cannot be a critical pair of P
and must belong to P. Consequently. P is indeed the maximum of all those weak

orders included in P. This completes the proof of Theorem 1.17. a

Remark 1.18. Defining the disconnected degree of a poset P to be the number
d(P) of its critical classes. we have that any proper poset P can be represented
as a union of d(P) posets. cach of which has only one critical class (and is thus
of disconnected degree 1). Indeed. it can be shown that:

If P is a proper poset and KC(P) is the collection of its critical classes. then for
anv C' € K(P) the relation PU (PN (C x C)) is a poset of disconnected degree

L. and

(1.9) P = Ucenipy (PU(PN(C x CY)).
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1.4 Expansions of a Poset

We now discuss minimal weak orders including a poset P. The situation is not as
clear cut as in the case of the contraction because (as will be proved) a minimal
weak order including P is unique only if P itself is this weak order. Candidates
for minimal weak orders are easily derived from the “height” and the "depth” of

P.

Definition 1.19. Suppose that P is a poset on the finite set . The height h(r)
of a point r in Y equals the cardinality of a longest chain within P ending in r.
Thus. rPy implies h(r) < A(y) (but not conversely). and the minimal elements
of P have height 1. When the set H; = {r € Y| h(r) = k} is not empty. it is
referred to as the level k (of P). The height weak order P* of P is defined by
Py iff h(r) < h{y) (cf. Remark 1.4(a)). The height h(P) of poset P is the
largest value of h on V.

Similarly. the depth d(r) of r in Y is the cardinality of a longest chain starting
in r. Maximal elements of P have depth 1. The depth weak order P! is defined

by Py iff d(xr) > d(y). Clearly. both P* and P*¢ are weak orders including P.

Remark 1.20. The height and depth weak orders coincide iff all maximal chains
in P have the same length (here. ‘maximal” means ‘maximal for inclusion’). In

particular. P* = P = P if P is a weak order.

Lemma 1.21. Both P" and P are minimal among those weak orders including
P.

30

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



PROOF. Suppose P C It C P" for some weak order 11" Take a longest chain
I PryP --- Pry in P. All these elements must belong to distinct classes of 11",
and also of P*. Pick y € Y. Then we cannot have y11'r; (because 11" C P*). and
neither r,1y. Assume now r; Wyl r,., forsomei=1.2..... h. Asli"C P~
we get h(r,) < h(y) < h(x,,1). which contradicts the maximality of the chosen

chain. The argument for P? is similar. o

Example 1.22. With R the ac-order whose Hasse diagram is given in Figure
1.2. we have that R* = R Note that RU {dc.da.ba} is another weak order that

minimally includes R.

Theorem 1.23. Anyv proper poset is included in at least two minimal weak
orders.

PROOF. Let P be a proper poset. By Remark 1.20 and Lemma 1.21. if P
has two maximal chains with different length. then P* and PY may be taken to
be those two weak orders. Assume thus that all maximal chains of P have same
length. Since P is not a weak order. there exist r. y. = in Y such that rPy and
s || {x.y}. Clearly. we may assume that y covers r. Take anv maximal chain C'

of P containing =. Then there are « and ¢ in C' with

uFr. vFy. h(u)=h(r). hir)+1=h)=hy).

and either  zPrv (Case 1) or uPz: (Case 2).
In Case 1. we necessarily have uy € P*\ P and it is casily seen that

(P"\ {uy}) U {wu | h(w) = h(x) and w # u} U {yt | h(t) = h(v) and t # y}
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is a minimal weak order including P and distinct from P*. A similar construction

can be performed in Case 2. a

Remark 1.24. A representation of a proper ac-order R similar to that in Remark
1.18 can be formulated in terms of R". involving an intersection of §( R) ac-orders

of disconnected degree 1.

1.5 Non-Wellgradedness and the Fringes of an

AC-Order

Definition 1.25. Let S be any set in a family F of subsets of some set Y.
not necessarily finite. The outer fringe of S (with respect to F) is the set SY
containing all the points r € S = X'\ S such that SU {r} is another set in the
family F: formally.

S9={reS|Su{r}e F}
Similarly. the inner fringe of S (with respect to F) is the set ST containing all

those points r € S such that S\ {r} is another set in F: formally.

ST ={reS|S\{r} e F}
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For example. the outer fringe of an ac-order R in A is the relation R® con-
taining all those pairs ry in R such that RU {ry} € A. The concepts of inner
and outer fringes of a set in a family of subsets were introduced by Doignon and
Falmagne (1997): see also Doignon and Falmagne (1999). We specifyv the inner
and outer fringes of an ac-order R directly in terms of R. as a step in a proof
that the family of all ac-orders on a finite set is not. in general. “well graded” (see

Definition 1.27 and Theorem 1.29).

Proposition 1.26. The inner and outer fringes RY and R€ of an ac-order R on

Y. with respect to the family A of all ac-orders on Y. are respectively given by

(1.10) RT = R\ (RRR™'U R™'RR).

(1.11) R° =R\ (R°URRR'UR'RR).

Proofr. Let R be an ac-order. We first prove (1.10). Supposing rRTy. we
have by definition of RT that rRy and that R\ {ry} is an ac-order. If rRRR™'y.
then there exist ri..r» € Y such that rRry. riRry. and -~(yRr,). Note that
Iy # r (by irreflexivity of R). ry # r (by irreflexivity and transitivity of R). and
Iy # y (since then yRry and =(yRr,)). Furthermore. it can not be that ry =y
with ry # r and r; # y. since R\ {ry} is transitive. Thus rRriRraR™Yy. with
neither ry nor ry in {r.y}. Since this clearly violates [C2] in R\ {ry}. it must
be that ry ¢ RRR™. Similarly. ry ¢ R-'RR. so RF C R\ (RRR™' U R™'RR).

For the reverse inclusion in (1.10). suppose ws € R\ (RRR"'UR™'RR). We

wish to show that R\ {w:} is an ac-order. Note that R\ {wz} is asymmetric
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since R is. Suppose R\ {w:} did not satisfy [C2]. Because R is an ac-order.
with R and R\ {wz} differing only by the element wz. we would then have the
existence of wy.w, € Y such that w Rz, wyRw;. and =(uwsRuw). or we would
have the existence of z;. 22 € ) such that 3Rz, wRz. and-(:zRz;). But both
of these are impossible. the former implving wR“'RR=. and the latter implving
wRRR™':. Thus. the assumption that R\ {wz} does not satisfy [C2] is false. so
R\ {wz} is an ac-order. and the equality in (1.10) is established.

For (1.11). suppose first that rR%. Then rRy. and we must show
~(cR%). ry ¢ RRR™'. andry ¢ R'RR. Clearly we have —(rR'y). for
RuU {ry} is an ac-order (and hence irreflexive) by definition of RY. If tRRR™'y.
there would exist ry.r» € Y such that ~(rRry). =(r{Rr). and yRr,. Since
yRry and RU {ry} is an ac-order. this contradicts [C2]. Thus. ry ¢ RRR™.
Supposing rR~'RRy. we would have the existence of y,.y2 € Y such that
yiRe. =(y Rys). and ~(y2Ry). Since rRy and [C2] holds for RU {ry}. we get a
contradiction. This establishes the inclusion R® € R\ (R°U RRR™'U R™'RR).

Suppose now that wz € R\ (R"URRR™'UR™'RR). We must show RU {wz}
is an ac-order. If RU{w:} were not asvmmetric. the asymmetry of R would imply
sRw. Since =(wR"z) and so w # = by hypothesis, we would then have wRw (by
the irreflexivity of R) and wR™'z. which together would imply wRRR™'z. This
is a contradiction. so R U {w=} must be asvmmetric. It remains to show that
R U {w:} satisfies condition [C2]. This condition holds in R. but we must check

that the addition of the pair wz does not cause [C2] to fail for R U {wz}. This
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could happen in only two cases:

Case 1. There exist wy.wy € )Y such that w;RwRz. but —~(w2Rz) and
-(wyRus). In this case. we would have wR™'wiRusRz. so wz € R'RR. a
contradiction.

Case 2. There exist w.uws € Y such that wR:Rw,. but —-(wRuw>) and
=(w2Rwy). In this case. we would have wRu-Ruw R 'z. so wz € RRR™!. a
contradiction.

Thus RU {w=} is an ac-order. giving R° 2 R\ (R°URRR™' U R™'RR) and

completing the proof of (1.11). o

Definition 1.27. A family F of subsets of a set X is [-connected if. for anv
A. B € F there exists a finite sequence of sets A = Fy. Fy.... . F. = B in F such
that |F,_1AF] = 1. i = 1.... k (where A stands for the symmetric difference
between sets). The family F is said to be well graded if. in addition. we can

alwavs make & = [AADB].

This definition applies obviously to family of relations. The following result

appears in Doignon and Falimagne (1997).
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Theorem 1.28. Assume the set X is finite. The three following conditions on a

familv F of subsets of X are equivalent:
(i) F is well graded:

(ii) any two sets R and S in F which satisfh- R C S and R® C S must be

equal;

(iii) any twosets R and S in F which satisfr REC S. R C S.STCR. S°CR

must be equal.

Using this result. Doignon and Falmagne (1997) showed that the respective
families of all partial orders. biorders. interval orders. and sewmiorders on a given
finite set are well graded (for partial orders. this was proved before by Ovchin-
nikov. 1973: see also Ovchinnikov. 1983). We use the same result to prove the

following.

Theorem 1.29. The familv A of all ac-orders on' Y is well graded if and onlv if

Vi<

ProoFr. For |Y| < 3. the family A of all ac-orders on Y corresponds to the
family P of all partial orders on Y. which is well graded. Suppose that |Y] = 1.
We use the equivalence of (i) and (iii) in Theorem 1.28 to show that A is well
graded. To this end. suppose R.S € A satisfvr R € S. R® € S. ST C R.

S°CR. Inthecase RT = Rand ST=S. wehave STC R=RT C S =57 w0

R = S. Otherwise. we have without loss of generality RT ¢ R. There are onlv
o . .
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two possibilities for R. namely
w || rRyRzR™'w (Case 1) and wR™'rRyR: || w (Case 2).

[n Case 1. note that RT = {yz. ry}. and since by hyvpothesis R C S. we must
have rSyS=. Also. because R® = {wy.rw} and by hypothesis R C S. it must
be that wSy and rSw. But wSy and rSw respectively imply (along with the
transitivity of S) wSr and ySw. Since S satisfies [C2]. we have necessarily wS:z.
i.e.. S = R. The proof that we also have S = R in Case 2 is similar. By Theorem
1.28. then. A is well graded if | Y| = 1.

Figure 1.3 shows that A is not well graded if |J] = n > 5. In this figure.

RI = {31.42} = ST and RY = {32.41} = S9. vet R, and S, are distinct. As

(iii) of Theorem 1.28 is not satisfied. A is not well graded. a
Rn 5 6 Sn
P 2
2 \\ N
1 I 2 1¢ N2
l e o 3 o
ST ST
L] [ ] . [ ] L] [ J \.
6 7 n 5 7 n

Figure 1.3: Distinct ac-orders on an n-element set. n > 5. which have identical
inner and outer fringes. (\When n = j. the vertices greater than j are omitted.)
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1.6 Downgradability and Upgradability

We just proved that the family of ac-orders on Y was not necessarily well graded.
However. such a family is always 1-conrected (cf. Definition 1.27). In fact. much
more can be proved. namely. any nonempty ac-order on Y can be “trimmed down’
by removing pairs one by oue. until the empty ac-order is reached. without ever
leaving the family of all ac-orders on Y. Also. going upward. any ac-order which
is not a linear order can be enlarged by adding pairs one by one. until a linear
order is formed. without ever leaving the family. This section is devoted to the

relevant definitions and exact results.

Definition 1.30. Any set in a family of sets F is called downgradable
(resp. upgradable) if it has a nonempty inner fringe (resp. outer fringe). The
family F itself is downgradable if all its non-minimal sets are downgradable. It

is said to be upgradable if all but its maximal sets are upgradable.

Remarks 1.31. (a) By itself. neither downgradability nor upgradability implies
l-connectedness. In the case of ac-orders. however. the empty relation is trivially
an ac-order and so downgradability (see Theorem 1.32) implies l-connectedness.
(b) Clearly. if a family of sets is well graded. it is also upgradable and
downgradable.
(c¢) Upgradability and downgradability of a set in a family F are relative to
that family. However. if F C G are two families of sets. and S € F is downgrad-

able (resp. upgradable) in F. then is is also downgradable (resp. upgradable) in
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G. In particular. any semiorder on Y which is neither empty nor a linear order

is both upgradable and downgradable in A.

Theorem 1.32. The family A of all ac-orders on Y is both downgradable and

upgradable.

Note that the maximal sets in A are the linear orders. Thus. all the other

ac-orders are upgradable.

Proor. We write || =||g. Let R be an ac-order on Y which is neither empty
nor a linear order. By Remark 1.31 (c¢). if R is a semiorder. then it is both
downgradable and upgradable in A. Suppose thus that R is not a semiorder.
that is. there exist r.y. > and w in Y such that rRy. :Ruw. but neither rRu nor

:Ry. We claim that both of the following must hold:
[D] rye R%:
(U] rue R°.

Beginning with Claim [D]. we proceed by contradiction and suppose that ry ¢ RZ:
thus. R\ {ry} is not an ac-order. Since R\ {ry} is asymmetric (because R is
asvimnietric) and is not an ac-order. it cannot satisfy [C2]. We have thus at least
one of the following two cases.

Case [D1]. There exist t # r and v in Y with tRuRy and r || t. It is easily
checked that r. 2. y. w. t. and « are all distinct. Also. = || y and tRRy imply
tRz by [C2]. and we get tRRw with r || {¢. w}. an impossibility because R is an
ac-order.
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Case [D2]. There exist s # y and ¢ in Y with rRvRs and y || s. All of r. =.
y. w. v, and s are distinct. But then £ || w and rRRs imply wRs by [C2]. and
we have zRRs with y || {=.s}. again an impossibility.

Turning to Claim [U]. assume now that rw ¢ R: thus. R U {ru} is not
an ac-order. We cannot have wRr since it would vield zRu'RrRy. and so Ry
by the transitivity of R. contradicting —(zRy). This implies that R U {ru} is
asymmetric. As it is not an ac-order. it cannot satisfy [C2]. Again. we have only
two possible cases.

Case [Ul]. There exist ¢. v in Y with tRr and u || {t.w}. w & {t.w}. We see
that z. z. y. w. t. and u must be distinct. Moreover. = || y and t RRy imply Rz,
and we have t RRw with « || {¢.w}. in contradiction with R being an ac-order.

Case [U2]. There exist ¢. s in Y with wRs and v || {r.s}. ¢ ¢ {r.s}. All of
r. z. y. w. v.and s are distinet. But :Ruw Rs together with = || y imply yRs: so
rRRs and v || {r.s}. again a contradiction of {C2].

We conclude that both claims [D] and [U] are true. and so R is both downgrad-

able and upgradable. which establishes the theorem. a
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Remarks 1.33. (a) The first part of our proof relies on the previously estab-
lished result that the family S of semiorders on Y is well graded (Doignon and
Falmagne. 1997). A more direct proof of the downgradability of S reveals that a
nonempty ac-order always contains a pair connecting level 1 and level 2. or a pair
connecting level 2 and level 3. that can be removed to give another ac-order. A
more direct proof of the upgradability of S reveals that. for an ac-order R which
is not a chain. there must exist two elements within level 1* of R. or between
levels 27 and 37 of R (where the * means that successive minimum elements have
been discarded before the level is determined) that can be added as a pair to R
to give another ac-order.

(b) In view of strengthening Theorem 1.32. we could ask whether. for two
given ac-orders R and S with R € S. we alwayvs have ST\ R #  (i.c.. whether
it is always possible to move from a given ac-order S to another one R included
in S. deleting one pair at a time). The answer is negative. as seen by taking S
as in Figure 1.3 and R = {31.42}.

(c) Notice that Theorem 1.32 does not extend to the infinite setting. Indeed.
take ) to be the set R of all reals. Its usual strict linear ordering < is an ac-order
which is not downgradable. Moreover, setting rPy exactly when r + 1 < y. we
get an ac-order /2 on R which is not upgradable although it is not a maximal

order.
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Chapter 2

Toward a Graded Generalization

of Partial Orders

The aim of this work is a better understanding of families of sets closed under
union --which generalize “partial orders’—via the examination of a progression of
types of such families. Motivation for this work is detailed in Chapter 0.

We begin with a nonempty. finite set Q and a family & of subsets of Q. The
elements of Q are called items. Members I of K are called states. If the family

K contains both @ and Q. is closed under union. and has the property that
(BAabeQ(VNeK:ae KN ebe ).

then K is called a knowledge space on Q. If. in addition. K is closed under

intersection. then it is called a partiallv ordinal space.
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The reason for this latter terminology is that there exists a one-to-one corre-
spondence between the collection of all partially ordinal spaces K on Q and the
collection of all ‘partial orders” Q@ on Q. (A partial order is a reflexive. transitive.
and antisvmmetric relation.) This is a classical result due to Birkhoff (1937).
(See also Doignon and Falmagne. 1999. Theorem 1.49.) The correspondence is

defined through the equivalences

(2.1) Py <= (VK eK:qe AN=>peR)
and
(2.2) NeKe V(p.q)eQ:qe K =>pe i)

An interpretation of these equivalences is that a pair (p. ¢) is in Q precisely when
p is a ‘prerequisite’ item for ¢. We formally define the concept of a “prerequisite’
as follows: pis a prerequisite for ¢ in K if. for all K € K. we have that ¢ € K
implies p € K. A background for an item ¢ is a minimal state of K containing ¢.
with minimality being with respect to set inclusion.

Each item in a partially ordinal space has a unique background. Indeed. if
item ¢ had distinct backgrounds 'y € K and (' € K. then C;, N Cy € K would
be a set which contains ¢ and which is strictly included in ;. contradicting the
minimality of C'y. Similarly. it is straightforward to show that a knowledge space
ou (@ is closed under intersection if each item in Q has a unique background. (See

Theorem 1.40 of Doignon and Faliagne. 1999.)
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Thus. a knowledge space not closed under intersection necessarily has at least
one item with more than one background. We introduce (following Doignon and
Falmagne. 1999) the concept of a “surmise function.” which is a function that

associates to each item its set of backgrounds.

Definition 2.1. A function o from Q to 227 is called a surmise function on Q if
it satisfies the following three conditions for all ¢.¢' € Q and C.C" C Q:

(1) if C' € o(q). then q €

(2) if ¢ € C € a(q). then " C C for some C’ € o(¢'):

(3)if C.C" € o(q) and C" C C'. then C' = C".

Thus. a knowledge space K on Q is closed under intersection if. and ouly if.

lo(g)] =1 for all ¢ € Q.

Definitions 2.2. Let K be a knowledge space on Q. with |Q] = n. For each
je{l.....n} et S, = {A €291 <|4] < j}. If P, is the relation from S, to

Q@ defined by the equivalence

(2.3) APq<—= (VKN eK: ANK =0=q¢ RK).

then P, is called the j-entailment of IC. The family K, defined by the equivalence
(2.4) Kek, = VA eP,:ANKN=0=¢¢R)

is called the space generated by P,. If K, = K. then the j-entailment of K is said

to recover K. or. equivalently. that K is recovered by the j-eutailment of K.
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Remarks 2.3. (i) The terminology “space generated by~ in the above definitions
is justified since any family defined via (2.4) is a knowledge space. (ii) With K,
the space generated by the j-entailment of K. we have that K, C K for each
J.J = 1....]Q|. (iii) It turns out that a knowledge space K is closed under

intersection precisely when it is recovered by its l-entailment.
Example 2.4. Let Q = {a.b.c.d}. and let
L ={0.{a}. {d}. {a.b}.{a.d}.{a.b.c}. {a.b.d}. {a.c.d}.Q}.
The l-entailment Py of £ is given by
Py = {(a.a).(a.b).(a.c).(b.b).(c.c). (d.d)}.

and the 2 entailment P, of £ is given by

Piu{({a.b}.a). ({a.c}.a). ({a.d}.a). ({a.b}.b). ({a.c}.b). ({a.d}. b). ({b.c}.b).
({b.d}.b). ({a.b}.c). ({a.c}.c). ({a.d}.c). ({b.c}.c). ({b.d}.c). ({c.d}. e).

({a.d}.d). ({b.d}.d). ({c.d}. d)}.

These entailments generate the respective spaces
Ly ={0.{a}. {d}. {a.b}.{a.c}.{a.d}.{a. b.c}. {a.b.d}.{a.c.d}.Q}

and

C~_»=C.

so that the 2-entailment recovers £. but the l-entailment does not.
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For the space £ above, the item ¢ € Q has two backgrounds. namely. {a.b.c}
and {a.c.d}. Since the space is recovered by a 2-entailment and not by a 1-
entailment. and in view of Remark 2.3 (iii). one may ask whether there is a
relationship between the number of backgrounds for items in a knowledge space
and the smallest integer j such that a j-entailment recovers the space. As shown
in Theorem 2.7 below. a A-entailment will always recover a space whose items
have at most & backgrounds. However. there exist knowledge spaces with items
having more than & backgrounds which may be recovered by a A-entailment. The

following example gives such a space.
Example 2.5. Let M be the space generated by the family
F ={0.{a}. {b}. {b.c}. {c.e}. {b.d. f}. {b.c.d}. {c.d.e}. {a.d. f}. {c} {a. [}. {b. f}}.

that is. let M be the union closure of F. Then M is a knowledge space on
{a.b.c.d.c. f} that is recovered by a 2-entailment.! Note that the item d in Q

has four backgrounds.

Remark 2.6. [t appears possible to construct. for cach & > 2 and each
i € {2.....k}. an example of a knowledge space which is recoverable by an

i-entailment but which contains an item (or items) with A backgrounds.

However. we have the following theorem:

'This was obtained using Mathematica.
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Theorem 2.7. Suppose that K is a knowledge space on Q. Suppose also that
the maximum number of backgrounds in K for any item of Q is {. Then K may

be recovered by an f-entailment.

PROOF. Let |Q| = n. By Theorem 5.5 of Doignon and Falmagne (1999). we have
that K may be recovered by an n-entailment. Let o be the surmise function on
Q. Denoting max{|o(q)|: ¢ € Q} by . we wish to show that K may be recovered
by an {-entailment Py.

Since we necessarily have that the space K¢ generated by Py includes the
space K. we must show that A" ¢ K implies A" € K,. So. suppose & ¢ K. By
(2.4). there exists (A.p) € P, such that ANK =0 and p € KA. Let o(p) =
{o(p)1.... .o(p)m}. and note that m < €. By (2.3). for cach a(p), € o(p) there
exists a(i) € A such that a(i) € a(p),. (For. otherwise. A Na(p), = 0 but
p € a(p),.) Writing A" = {a(1).a(2).... .a(m)}. we have that A'N A = (since

A CHd)and [A] <m < Thus. K ¢ K. a
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Chapter 3

On Invariance Properties of

Empirical Laws

Notions of invariance have played a central role in the investigation of statements
considered suitable to be scientific laws. For instance. the classical concept of
‘dimensional invariance’ has been widely used. via the method of dimensional
analysis. in the search for lawful numerical relations among physical variables.
The method of dimensional analysis may be employved. for example. in the deriva-
tion of the functional description of the motion of a simple pendulum (see e.g.
Krantz et al.. 1971: Narens. 2002). A related invariance notion. ‘meaningful-
ness.” has been used in the theoretical sciences for seemingly the same purpose
as dimensional analysis: scientists seck to describe empirical relationships among
ariables via functional laws. and putative invariances of the measurement theo-

ries of these variables may greatly constrain the possible forms of such laws. The
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specific use of these and related notions of invariance in the formulation of lawful
functional relations may be found. for example. in Luce (1959. 1964. 1990): Luce
et al. (1990): Osborne (1970): Falmagne and Narens (1983): Aczél et al. (1986):
Kim (1990). The focus of the present paper is a comparison of these two notions
of invariance. which are appropriately formalized here in the spirit of Falmagne
and Narens (1983). Our main result, which gives insight into the relationship be-
tween the two formulations. generalizes a result by these authors. In preparation
for a formal presentation. we inspect an example.

The pressure (£). volume (v). temperature (t) and quantity (n) of an “ideal”

gas are related by the equation

(3.1) P(e.t.n) = Rlnf.

v
in which R is a dimensional constant. Note that the numerical value of R depends
on the units emploved in the measurement of the variables. Let us fix some triple
of units in Eq. (3.1). say. liters. kelvin, and moles. Any change of units for one of
the variables amounts to multiplication of one of these fixed units by a positive
number. Suppose we change to a triple of units whose volume measure requires
multiplication of liters by a. whose temperature measure requires multiplication
of kelvin by 3. and whose quantity measure requires multiplication of moles by
5. Defining the functions fi. fo. f3 : RY — R™ by fi(r) = ar. fo(r) = Jr. and

fs(r) = vooand setting f = (fi. fo. f3). it is appropriate to write the equation
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relating the variables as

(3.2) Ps(v.t.n) = R(f)lnt.

v
indicating the particular dependence on the units emploved. The functions fi.
fa, and fy are called ‘representations.” with each amounting essentially to a choice
of unit for a particular variable.! Note that. with this notation. Eq. (3.1) would
be rewritten P:(v.t.n) = R(E)%nt. where ¢ = (¢.1.¢) for ¢ the identity function
(defined by «(r) = r) on R*.

A minimal requirement for a law relating physical variables is that the par-
ticular choice of representations should not alter the numerical description of the
phenomenon in any essential manner. This intuitive notion may be subject to
different interpretations: we propose one of them here. Suppose we measure the
pressures of an ideal gas at two different triples of volume. temperature. and
quantity. using the respective representations fi. fo. and fs. and we find that the
first pressure is less than or equal to the second (with the same pressure represen-
tation used for cach). The relationship between the two pressure computations
should hold even if we use different representations g;. g». and g3. In other words.
it should be the case that. for any representations g;. ¢s. g3. with g = (¢1. g2. g3).

we have

! In this we follow Narens (2002). who uses the term “representation” rather than “scale.”

which also is in commen use (Stevens. 1951).
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Pr(fle.t.n)) < Pr(f('.8.n"))
(3.3) iff

Py(g(v.t.n)) < Py(g('.¢'. n")).

Note that the function P in Eq. (3.2) satisfies this requirement. Indeed. with

f1. fa. and f3 as above. we have

Pe(f(v.t.n)) < Pr(f(e'.¢.n"y)
iff

l
R(f)—~ni3t < R(f)—-l—,f,n’.if'

ar at

iff

\ l
~nt < =n't’.
v v

As this last equality does not depend on the representations used. Formula (3.3)
follows for any functions f and g specifyving the representations. We shall sayv that
the function P satisfies the property of ‘meaningfulness.” (A precise definition is
given as Definition 3.5.)

The intuitively compelling notion of invariance under changes in represen-
tation has been described in several wayvs in the measurement literature. and

various approaches have been taken in formulating this notion (sce especially
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Narens. 2002). One approach has been to describe invariance in terms of func-
tional equations which relate independent variables (and their transformations)
to dependent variables (and their transformations): see Luce (1959. 1964): Os-
borne (1970): Aczél et al. (1986): Kim (1990). In another approach. invariance
is described via automorphisms of qualitative structures of nonempty sets and
relations on these sets: if certain (additional) constraints are assumed for the
structures. strong results which link physical or psychophysical variables may be
derived (Luce. 1978. 1990: Falmagne and Narens. 1983: Narens. 2002).
An early formulation. one which may easily have engendered those just men-

tioned. is due to Suppes and Zinnes:

A numerical statement is meaningful if and only if its truth (or falsity)

is coustant under admissible scale transformations of any of its nu-

merical assignments. that is. any of its numerical functions expressing

the results of measurement. (Suppes and Zinnes. 1963. p. 66)
(Here. "scale™ corresponds to “representation.”) This description of meaningful-
ness is (admittedly) imprecise and may lead not only to more than one approach
for its rigorous formulation. but to more than one fundamental interpretation.
The equivalence in (3.3) provides one such interpretation: constancy of the truth
of a statement is described as a preservation of the order of functional outputs.
and admissible transformations are interpreted as being those which match the

transformations on which the functions depend. There may be other interpreta-

tions of “admissible transformation.” however. For instance. consider a fixed Pf.
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and suppose that there are triples (v.¢t.n) and (v'. . n’) such that
Pr(v.t.n) < Py .t n').
If for any representations g;. g». and g;. with g = (g1. g2. g3). we have
Py(g(.t.n)) < Py(g(e'. ¢ n'))
iff
Ps(v.t.n) < Pe(v'.Hon').

then Py satisfies an invariance property which may be said to satisfv Suppes and
Zinnes™ description of meaningfulness. However. we shall say in this case that
Py is "dimensionally invariant.” A formal definition of dimensional invariance is
given as Definition 3.6 (see also Causey. 1969: Krantz ct al.. 1971: Narens. 2002).

Meaningfulness and dimensional invariance are thus seen to be closely related.
The two may be hard to separate: indeed. it may seem that any empirical rela-
tion that satisfies one must satisfv the other. We will see through the following

example that this is not the case.

Example 3.1. Choose representations f, and f> of length and (positive) tem-
1 s} p

perature difference. respectively. and write f = (f). f2). The final length L of

a rod of initial length ¢ following an increase t in temperature is given by the

equation

Li(€.t) = (1 + C(fa) O).
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in which ¢ is a constant that depends on f>. In particular. if f, is the represen-
tation corresponding to multiplication by /J. then ((f;) = 5-(;—' where again ¢ is
the identity function on R*. Then the function L; satisfies meaningfulness but

not dimensional invariance. (This will be demonstrated below in the Definitions

and Basic Concepts section.)

We present a result in Theorem 3.11—the main result of this paper—which
ties together the notions of meaningfulness and dimensional invariance. In par-
ticular. we show that. under a natural condition relating members of a family of

functions. the two notions are equivalent.

Figure 3.1: Depiction of a transformation that is not factorizable

As mentioned. our main result is a generalization of a result by Falmagne
and Narens (1933). The generalization was motivated by close inspection of the
tvpes of transformations under which invariance may be studied. Note that each
of the transformations considered so far is made up of individual transformations

which act independently on separate variables. For instance. the transformation
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f considered in Example 3.1 is written f = (f;. f2) for the two transformations
fi and fo. each of which acts on a single variable. Such transformations are the
ones often considered in the measurement literature (see Narens. 2002). There
are important situations. though. in which significant invariances hold under
transformations that can not be written as individual transformations on separate
-ariables. For instance. consider the transformation of AABC to AABD as
shown in Figure 3.1. in which BD is constructed parallel to AC. with the length
of BD equal to that of AC. Clearly the arca of the triangle is invariant under this
transformation. If we define the transformation via the function f : [—[::=l 0.1 —
I—[';‘=l R™. where f(a.b.c) = (a.d.¢). then there are no functions f. fo. and f4
such that f = (f1. fo. f3). [n other words. f is not ‘factorizable.” (See Definition
3.4 below.)

We give two more examples of transformations which are not factorizable. but

under which important invariances hold.

Example 3.2. Psychophysicists are interested in the relationships between phys-
ical magnitudes of stimuli and the strengths of the sensations they evoke (Fechner.
1860). An important task in psychophysics is the construction of a measure of
‘subjective distance’ between stimuli based on data which give. for instance. the
probability that one stimulus is judged to be different from another. This task.
referred to as Fechnerian scaling. may be complicated by the fact that the relevant
stimuli occupy a multidimensional space. For instance. the stimuli might be au-

ditory toues that vary in both amplitude and frequency. Dzhafarov and Colonius

wn
(@]
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(2001) propose a theory of Fechnerian scaling which is built in part upon the idea
that such distance measures must be invariant with respect to any diffeomorphic
transformation of the space of stimulus magnitudes (usually taken to be a subset
of R"). Such transformations may not be factorizable in the multidimensional

case.

Example 3.3. In the theory of relativity. the “form™ of a physical law must be

invariant under a particular transformation of the variables called the Lorentz

transformation:

Every general law of nature must be so constituted that it is trans-
formed into a law of exactly the same form when. instead of the
space-time variables r. y. =. and ¢ of the original co-ordinate system
K. we introduce new space-time variables r'. y’. /. ¥’ of a co-ordinate
system A”. In this connection the relation between the ordinary and
the accented magnitudes is given by the Lorentz transformation. Or
in brief: General laws of nature are co-variant with respect to Lorentz
transformations. (Einstein, 1961. pp. 42-13).

This transformation is given by

Ir—ut t— &r

where r. y. and : are position coordinates. t is time. ¢ is the speed of light. and

v is the velocity of coordinate system A” with respect to A” (in the direction of

the r-axis of A). It is clear that the transformation is not factorizable.
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3.1 Definitions and Basic Concepts

- outo

Let X be a nonempty set. and let 7 = {f|f : X — X} be a family of surjective
functions mapping .X onto itself. For any f € F. let M, be a function mapping
X to a linearly ordered set Z. with the order written (Z.<). In the examples
above. X CR" and Z C R.

We call M = {Mf|f € F} a family of ordinal codes. Each My € M is an
ordinal code.

[n this section. we present formally the concepts of meaningfulness and di-
mensional invariance. We emphasize that the transformations involved may or

may not be factorizable. The precise definition of factorizability is as follows:

Definition 3.4. Suppose X' = []/_, X, and ¥ = []'_, }; for nonempty sets .\,

=1
and Y. i =1.... .n. A function f : X' — Y is factorizable if there exist functions
i X =Y. fori=1.... n.such that f(r,.....r,) = (fi(ry).... . falry)) for

all (ry.....r,) € X.

The following two definitions formalize and generalize the concepts of mean-

ingfulness and dimensional invariance introduced earlier through examples.

a7
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Definition 3.5. The ordinal code My € M is meaningful if. whenever f* € F.

we have

M[f()] < My[f(y)]

iff

My [f(0)] € Mg [f* (W)

for all .y € .X. If this holds for all \/; € M. we say that M is meaningful.

Definition 3.6. The ordinal code M; € M is dimensionally invariant if. when-

ever f*.g" € F. we have

Me(fr(o)] < Melf*(y))

iff

Mlg™ ()] < Mylg™(y)]

for all r.y € X. If this holds for all M, € M. we say that .M is dimensionallv

invariant.

As mentioned. though the notions of meaningfulness and dimensional invari-
ance are related. there exist phvsical laws which satisfy one but not the other.
We return to Example 1. which presents a law that is meaningful but not dimen-

sionally invariant.

[&]]
[0.4)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Example 3.1 revisited. Choose representations f; and f» of length and
(positive) temperature difference. respectively. and write f = (f;. f»). The final
length L of a rod of initial length ¢ following an increase ¢ in temperature is given

by the equation
(3.4) Le(€.t) = €1 +C(f)t).
in which ¢ is a constant that depends on f,. In particular. if f, is the represen-

tation corresponding to multiplication by .3. then {(f,) = #l

To see that meaningfulness is satisfied. suppose that the representations f;

and f, correspond to multiplication by a and .J. respectively. Then
Le(f(£.)) < Ly(f(C.F))
iff

al(1+((f2) 3t) < al'(1 +{(fo) 3E)

iff
af(l + i(;—) 3t) < af(1 + “—(j’—) 3t')
iff

((L+() ) S O(L+ (0 ).

and this final inequality does not depend on the representations f; and fi. Thus.
Ly is meaningful. Now we show that Ly is not dimensionally invariant. We let
fi correspond to multiplication by 1. f, correspond to multiplication by ¢(¢). ¢,

correspond to multiplication by 1. and g, correspond to multiplication by 2.
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Setting { =1. ¢ =2.t=3,t =1.and g = (g,. ¢2). we have

Lf((’.t) =1(14+3)=4<2(1+1)= Lf([,. t').

but

Le(g(f.6)) = (1 +(2)3) =7 > 2(1 + (2)1) = L(g(¢.')).

This means that Ly is not dimensionally invariant. We note that there actually
are several physical laws having the form in Eq. (3.4). including Guyv Lussac’s
Law (for the change in volume of an ideal gas under a temperature change) and
the law relating specific heats at constant temperature and volume (see. e.g.. Hix
and Alley. 1958).

[t turns out that the notions of meaningfulness and dimensional invariance
are independent: in addition to the function above. which is meaningful but not
dimensionally invariant. there exist functions which are dimensionally invariant
but not meaningful. As an example. consider the function My : R™ x R™ —
R defined by Mg(ar.y) = r + Ay. where f = (fi. fi) and f; corresponds to
multiplication by A.  As shown in Falmagne and Narens (1983) and Roberts
(1935). this function is not meaningful. but it is dimensionally invariant. In
contrast to Example 3.1. this and other available examples of functions which
are not meaningful are hypothetical. i.e.. are not necessarilv associated to any
extant empirical laws. This is not surprising. in view of the compelling argument
behind our formulation of meaningfulness. Indeed. this argument probably has

been a part of scientists™ intuition since long before a definition was formalized.
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The following Lemma is a well-known result. so the proof is omitted. (See

e.g. Munkres. 1975.)

Lemma 3.7. Suppose f : X — Y. with X and Y ordered sets in the order
topology. If f is strictly increasing and surjective, then f 1s a homeomorphism

(i.e.. a bicontinuous bijection).
The next two Propositions are of use in the proof of Theorem 3.11.

Proposition 3.8. The family M is meaningful if. and only if. for each f.h € F

there exists a strictly increasing Hyp, © Mp(X') — Mp(X') such that
1‘[].;.(.\[),[}!(1'\)]) = \[f[f(.l’)]

for all r € X. In this case. Hyy, also ts surjective.

Moreover, if Z has the order topology. then Hyy and Hff,f are continuous.

ProoOF. Choose f.h € F.

(=): Suppose M is meaningful. Define the function Hyj bv

Hyn(Milh(r)]) = Ms{f(x)]

for all r € X. Then Hjp is well defined and strictly increasing since M is
meaningful.  Also. since f and A map X onto itself. H¢, maps M, (X)) onto

Mp(X).
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(¢=): Let f* € F. Suppose Hy, and Hjy. ) are as described in the statement
of the proposition. Since Hys and Hy. j are strictly increasing. we have for all

r.ye X.
M[f(0)] = Hea(Mulh(0)]) < Hpn(Malh(y)]) = M/ [f ()]
iff
Muh(r)] < Malh(y)]
iff
M [f * (2)] = Hp h(Ma[R(2)]) € Hpe a(Mi[h(y)] = Mp-[f = (9)]-
Therefore. we have M [f(x)] < Mf[f(y)] & M- [f(2)] < Mp[f*(y)]. s0 M

is meaningful.

The Moreover statement is proved with an application of Lemma 3.7. a

Proposition 3.9. The family M s dimensionally invariant if. and only if. for
cach My € M and for all g.9* € F there enists a strictly increasing Qg 40 -

M(X) — Mp(X) such that

Qrog (-‘[f[!/‘(l')]) = -‘[f[g(l')]

forall r € X. In this case. Qy 4+ also is surjective.

Moreover, if Z has the order topology. then 0 and Q7Y . are continuous.
poiogy f9.9 fg.g

We omit the proof. which is similar to that of Proposition 3.8.
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The following definition gives a property which provides a link between the
two formulations of invariance. This property applies to families of ordinal codes.
and it requires that any two codes be related by in a natural way. that is. via a

mapping that depends only on the indexing transformations.

Definition 3.10. The family of ordinai codes M is isotone if there cxists a
function M* : X' — Z such that. for each M € M. we have M; = m;o M~ for

some strictly increasing and surjective my : M*(.\) — Mp(.X).

Note that there is no loss of generality in assuming that M = /[, for any
h € F. Indeed. if M is isotone. then M, = my o M* and M; = mjyo M*
for functions M*.my. and m; as in Definition 3.10. with f € F. But then
My =(mgom;')yo M. and mpomy': My(X) — My(X) is strictly increasing

and surjective.

3.2 Main Result

The following theorem. which generalizes Theorem 4 in Falmagne and Narens
(1983). specifies the relationship among meaningfulness. dimensional invariance.
and isotonicity. In particular. it states that meaningfulness and dimensional

invariance are equivalent for isotone families of ordinal codes.
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Theorem 3.11. Any two of the properties of meaningfulness. dimensional in-

varwance, and tsotonicity imply the third.

PROOF.
(i) Dimensicnal invariance and isotonicity imply meaningfulness:

Choose g* € F. For any f € F and r € X. we have

Mi(f(2)] = Qppg (Mylg™(2) [by Prop. 3.9]

= (Qyfq- 0 myg W M;-[g7(2)]) [by isotonicity].

Since Qy g4+ © My, is strictly increasing. Prop. 3.8 gives that .M is meaningful.

(ii) Meaningfulness and isotonicity imply dimensional invariance:
Suppose M is meaningful and isotone. and let My, M, € M. Since M is

meaningful. there exists a strictly increasing Hy, such that

M f(0)] = Hpn(Ma[h(x)])

for all r € X'. Since .M is isotone. there exists a strictly increasing and surjective

my such that

M f(r)] = mya(Mu[f(2)])

for all r € X. Thus.
(3.5) M f(o)] = m;;(.\[f[f(.r)}) = (m}f_,[l o Hyp)(My[h(x)]).

where mf"‘l o Hy is strictly increasing.
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Let g € 7. We have

My[f(2)] = mga(Ma[f(£)]) [by isotonicity]
= (myho m)?',li o Hypn)(My[h(2)]) [bv Eq. (3.5)]
= (mgnomp, o Hepomy )(Mlh(r)]) [by isotonicity].

where my 4 0 m}l o Hypomy ; is strictly increasing. Therefore. by Prop. 3.9.
M, is dimensionally invariant. Since g € F is arbitrary. we have that M is
dimensionally invariant.
(iii) Dimensional invariance and meaningfulness imply isotonicity:

Suppose M is dimensionally invariant and meaningful. and choose M, € M.
Let f € F be arbitrary.

Since M is meaningful. there exists a strictly increasing and surjective Hj,

such that

My f(r)] = Hpa(Ma[h(r)])

for all r € X.
Since M is dimensionally invariant, there exists a strictly increasing and sur-

jective Q n s such that

Mu[h(2)] = Qua s (Mi[f(r)])

for all r € X.
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Thus.

My{f(£)] = (Hpn 0 Quag)(Ma[f(x)))

for all r € X. where Hpp 0 Qupny o Ma(X) — Mp(X) is strictly increasing and

surjective. Since f :.X — X is surjective. we have for all a € X that
Msla] = (Hfn 0 Qung)(Mala]).

i.e.. M is isotone. a

3.3 Discussion

We have compared the notions of dimensional invariance and meaningfulness in
the context of arbitrary transformations on the set of functional inputs. The
results in Theorem 3.11 generalize those of Falmagne and Narens (1983). who
cousider invariance only under transformations which can be factorized and writ-
ten as strictly increasing. surjective. real-valued functions of real variables. These
results state that dimensional invariance and meaningfulness are equivalent for
families of functions whose members are related via strictly increasing functions.
Such results follow in spirit not only Falmagne and Narens (1933). but also Luce
(1978). Narens (2002). who compare similar concepts of invariance.

Putative “laws™ which are invariant under the Lorentz transformation are
particularly interesting because they may be studied both with respect to this
transformation and with respect to changes of representation. It is feasible that
sonte of these may not be invariant under changes in representation. or at least
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would not satisfy dimensional invariance in the sense of Definition 3.6. when only
the changes of representation are considered. Note that a study of such “laws”
necessarily involves an approach in which invariance notions (i) are stated with
suitable generality for the transformations, and (ii) have families of functions as
the objects of interest. rather than single functions. as is the approach typically
taken. The formulations in the present paper are appropriate for such a study.
The motivation for this study. and perhaps for any study of properties of
invariance. is the investigation of the role of invariance in limiting the possible
forms that an empirical law may take. As mentioned. there is a literature which
seeks to pinpoint the functional forms which may relate independent and de-
pendent variables that are allowed certain types of representations (e.g. Luce.
1959. 1964: Osborne. 1970: Falmagne and Narens. 1933; Aczél et al.. 1986: Kim.
1990). These functions are assumed to satisfy certain invariance properties. and
quite often these properties are analogous to the notion of classical dimensional
invariance (Luce. 1959. 1964: Osborne. 1970: Aczél et al.. 1986). (We specify
“classical” because the invariance is assumed for a single function. rather than
for a family of functions as in the present paper and in Falmagne and Narens.
1983.) Given the laws presented in Equation (3.4)—established laws which do
not satisfy dimensional invariance in the sense of Definition 3.6-—it may be neces-
sary to examine further this assumption of invariance in attempting to categorize
functions suitable to be empirical laws. We have shown. for instance. that di-

mensional invariance and meaningfulness are distinct among extant physical laws.
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that is. there exist physical laws which satisfv one condition of invariance but not
the other. In particular. the law given in Example 3.1 is meaningful but not

dimensionally invariant. However. note that this law mayv naturally be rewritten
(3.6) ALs(E.t) =€C(fa)t.

where AL = L({.t) — (. often the quantity of interest. It is straightforward to
show that AL; in Eq. (3.6) is both meaningful and dimensionally invariant. (In
fact. under certain assnmptions of differentiability. the transformation o(¢) = ¢ is
the only transformation that renders L({.t) — o(£) meaningful and dimensionally
invariant.) Oune wonders whether dimensional invariance mayv be unessential:
perhaps a law may alwavs be trivially rewritten in a wav that recovers dimensional
invariance. This does not appear to be the case. as demonstrated by the following

two examples:

Example 3.12. The probability Ps(s.t) that an electron will exist at an energy

state s at absolute temperature ¢ is given by

. 1
(3‘) Pf(s.l’) = =7

1 +e~nt
where & and ~ are constants which may depend on the representations f; and
faof f=(fi.fs). (The constant ~ is Boltzmann's constant. and € is the Fermi
level energy.) Considerations similar to those used for Example 3.1 may be used

to show that Py is meaningful but not not dimensionally invariant.
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Example 3.13. The final length Dj(d. v) of a rod of initial length d undergoing

a velocity v is given by

(3.8) Dy(d.v)=d

where f specifies the representations and c(f) is a constant (the speed of light).
This physical law. called the Lorentz contraction. also is meaningful but not

dimensionally invariant.

[t is interesting to note that. though Equations (3.4). (3.7). and (3.8) take
diverse forms. the functions Ly, Py. and Dy in these equations each may be

written in the form
(3.9) Vy(a.b) = F [a(f)a” (3(£)6 +~(f)] .

in which a(f). J3(f). v(f). p. and 9 are constants. a and b are real variables. and
F is a strictly monotone function. Examination of these and similar physical
laws which are not dimensionally invariant. of whether these laws allow associ-
ated formulations which are dimensionally invariant. and of how those associated
formulations are obtained are lines of current research. These lines sugest the use
of dimeunsional invariance bevond the typical use ‘n classical physics. i.e.. bevond

the method of dimensional analysis.
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Chapter 4

Recasting (the Near-miss to)

Weber’s Law

[n many seusory experiments. the smallest perceptible positive difference A(r)
between two stimuli with intensities r and r+A(r) (measured in ratio scale units.
e.g.. grams for weights. watts/m? for pure tones) is approximately proportional
to r. This has been dubbed “Weber's law™ (Fechner. 1860). Some authors (Flo-
rentine, 1986: Florentine et al.. 1987: see also Narens and Mausfeid. 1992: Narens.
1994) propose that the data described by Weber's law and. more importantly. its
subsidiaries-—e g.. the so-called “near-miss to Weber's law’-~should be captured
directly by r + A(r). which is the actual dependent variable in most experimen-
tal situations. rather than through A(r). In fact. a number of researchers have
presented data in terms of the measure r + A(r) (e.g. Osman et al.. 1980: Scharf

and Buus. 1986: Florentine et al.. 1987, 1993: Buus and Florentine. 1991: Ozimek
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and Zwislocki. 1996: Zeng. 1998). Our goal in this paper is to bring new. empir-
ically grounded. theoretical arguments to the debate regarding the two indices
A(r) and r + A(r) and the possible models for the corresponding data. Our
presentation is organized in the form of three theses.

We begin with an important result involving the power law

(4.1) Alr) = Cr"

(in which €' and a are parameters) used by many researchers to describe svs-
tematic deviations from Weber's law. Equation (4.1) often gives a good fit to
the data with an estimated exponent a different from 1. However. we will prove
that Eq. {(4.1) with a # 1 is inconsistent with another equation which is enforced
in those common situations in which data are averaged over order of stimulus
presentation in a two-alternative. forced-choice (2AFC) task (or over position in
a visual discrimination task). This observation is especially relevant in the field
of psychoacoustics. in which Eq. (4.1) is used to fit many pure-tone intensity

discrimination data. with estimates of a typically around .9.
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Next we show. using empirical results from well-known studies. that many
pure-tone intensity discrimination data show a power law growth of r + \(r):

the model
(4.2) r+A(r) =K1’

(in which A" and J are parameters) also provides a good fit to many data that
were originally fit using Eq. (4.1). (The goodness-of-fit values are similar.) The
estimated values of .3 for Eq. (4.2). though greater than those obtained for a in
Eq. (4.1), are consistentlv less than 1.

We then derive an important logical consequence of this observation. namely
that the value of the parameter 3 must vary svstematically with the discrimina-
tion criterion in those situations in which the aforementioned averaging of data
has taken place. It is easily shown (see our discussion of Thesis 3) that if (4.2)
holds and .7 is invariant with the criterion. then necessarily .3 = 1. contrary to
the results of many studies. Of course. this lack of constancy of .3 may also apply
in situations in which no such averaging has taken place (Falmagne et al.. 1996).

Although our thearetical results apply in a very general class of psvchophysical
situations. we present our discussion in the specific context of discriminations of
either auditory or visual stimuli varyving on a single dimension. with the data
collected via a 2AFC task: indeed. it is to such situations that Eq. (4.1) has
often been applied (e.g. Guilford. 1932: Hovland. 1938: Schacknow and Raab.
1973: Penner et al.. 1974: Jesteadt et al.. 1977: Green et al.. 1979: Hanna et al..
1986: Viemeister and Bacon. 1988). For simplicity. we use terminology depicting

2
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the comparison of two stimuli separated by a delav—often called a two-interval.
forced-choice (2IFC) paradigm in the psvchoacoustics literature—but the reader
could also keep in mind the comparison of adjacent stimuli (in a visual task). OQur
notation in the rest of this note is a bit more fastidious than usual. as we indicate
the criterion value in the definition of A(r) and also keep track of the order (or
position) of stimulus presentation in the 2AFC (cf. Luce and Galanter. 1963:
Berliner and Durlach. 1973: Falmagne. 1985). Precise definitions are introduced

inn the next section.

4.1 Definitions and Background

Let = and y denote stimulus intensities! measured on a ratio scale. so that
r and y are both positive numbers: we do not necessarily assutne that y > r.
For convenience. we identify a stimulus and its intensity. The ordered pair (.r. y)
denotes the presentation of r in the first interval followed by y in the second
interval.  We write P(r.y) for the probability that y presented in the second
interval is judged greater than r in the first interval: then P(y. r) is the probability
that r in the second interval is judged greater than y in the first interval. We

write

(4.3) (r)=y ifandounly if P(r.y)=v.

“Intensity’ is used as a generic term to indicate physical magnitude of the sensory variable.

3
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In words: &,(x) is the intensity in the second interval judged greater than
I in the first interval with probability v. We call £ the sensitivity function of
P. In practice. the quantity £,(r) can be estimated by standard experimental
procedures (e.g. adaptive staircase. stochastic approximation). We restrict con-
sideration to pairs of intensities (r.y) whose discrimination probabilities P(r. y)
satisfy 0 < P(x.y) < 1: in the sequel. we use the phrase for all intensities” with
these restrictions implied. Also. we assume that P(r.y) is strictly decreasing in
its first argument and strictly increasing in its second argument. As is custom-
ary. we call a psychometric function any function P(r.-) : y — P(r.y) assigning.
for a fixed intensity r. the probability P(r.y) of judging y in the second inter-
val to be greater than r in the first interval. See Figure 4.1 for a summary of
the relationships among P(r.-). v. and &.. (Ignore A, (r) in the figure for the

moment.)

1.0

I So(r)

Figure 4.1: A psyvchometric function P(r..) and the functions N, and &, in a
case in which P(r.r) =.5.
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We turn now to the description of a particular condition on the probabilities
P(r.y) which is central to our discussion (see Theses 1 and 3). This condition.
which we call the ‘balance condition.” mav or may not arise naturally in a given
psvchophysical situation. but. as we argue below. it is automatically enforced as
a consequence of the common experimental manipulation of averaging over order

in a 2AFC task.

4.1.1 The Balance Condition

Our discourse in this subsection will be facilitated by a temporary expansion of
our notation. We denote by P(r.y) the probability of judging r in the first
interval to be greater than y in the second interval. and we denote by Py(r. y)
the probability of judging y in the second interval to be greater than r in the
first interval. Note that the function P, is the same as the function P above.
As before. we consider only those pairs (r.y) such that 0 < P(a.y) < 1 (for

1.2). using the phrase “for all pairs (r.y)" with these restrictions implied.

~

We assume that P (x.y) is strictly increasing in its first argument and strictly
decreasing in its second argument. and that Py(r.y) is strictly decreasing in its
first argument and strictly increasing in its second argument. We have. from the

definitions of P, and P,
(4.4) Pr.y)+ Po(xr.y)=P(y. 1)+ Pyy. 1) =1

for all pairs (r.y) and (y..r). Note. however. that P(r.y) = Ps(y.r) does not
necessarily hold in all empirical situations. Indeed. biases based on order or

I}
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position of stimulus presentation have been observed since Fechner (1860). and
order effects in a 2IFC paradigm in psychoacoustics are common (see e.g. Hell-
strom. 1978, 1979). Such effects are often deemed unimportant. or at least are
not modeled directly. In particular. experimenters typically allow the stimulus
pairs (r.y) and (y..r) to be presented with equal likelihood in a 2IFC task but
do not keep track of listeners’ responses separately for the two orderings (see
e.g. Schacknow and Raab. 1973: Penner et al.. 1974: Jesteadt et al.. 1977: Green
et al.. 1979: Hanna et al.. 1986: Viemeister and Bacon. 1988) This results in the
determination of a single psvchometric function which is an average of the two
psychometric functions Py(-.r) and P(r.-). In other words. disregarding order
information amounts to “collapsing” the two events

'y in the second interval is judged greater than r in the first interval

'y in the first interval is judged greater than r in the second interval’
into a single event

‘y is judged greater than r. regardless of order.”
Essentially. this leads to defining the discrimination probabilities P(r.y) by

the equation

Piy.r) + Py(r.y)

(4.3) Plr.y) = 5 .

(We direct the reader to Appendix A for two illustrations of Eq. (4.3) arising in

practice.)
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Together with (4.4), Equation (4.5) leads immediately to

Pi(y.x) + Py(r.y) + Pi(r.y) + P(y. 1)

(4.6) P(r.y)+ P(y.r) = 5 5 = 1.
We refer to the equation
(4.7) Plr.y)+ P(y.r)=1

as the balance condition (cf. Falmagne. 1985) We emphasize that the balance
condition may not hold empirically in a given psychophysical situation: if there
are biases based on order of stimulus presentation and if no averaging over condi-
tions is performed. then the balance condition will fail. However. whether or not
there are biases. if the psychometric function is determined via a method that
disregards the order of stimulus presentation. then (4.7) necessarily applies by

construction.

4.1.2 Weber’s Law and the Near-Miss

As can be seen in Figure 4.1. the Weber function 2\, is defined from the sensitivity
function &, by the equation

(4.8) Au(r) =¢&(r) —r.

Weber's law is then expressed by the equation

(4.9) A(r)=Cv)r.

in which the constant of proportionality C'(v) is strictly increasing with v. Values
adopted for the discrimination criterion v typically fall between .70 and .80. with

no universal convention (cf. Table 4.1).
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As Weber’s law is not always satisfied empirically. a number of substitutes
have been proposed. a prominent one being the replacement of (4.9) by the power

law
(4.10) A (r) = Cv) W,

with a(v) > 0 a parameter that may depend on the criterion v. Equation (4.10).
which plays a key role in this paper. has been used to fit data from several
experimental tasks (see Baird and Noma. 1978). including the judgment of line
lengths (Guilford. 1932: Hovland. 1938) and the discrimination of pure tones.
McGill and Goldberg (1968a.b) coined the term ‘near-miss to Weber's law’
to refer to the fact that. in intensity discriminations between two pure. 1000-Hz
tones presented in quiet. Eq. (4.10) seems to hold over a wide range of inten-
sities . with a typically around .9 (sce also Riesz. 1928: Dimmick and Olson.
1941). Researchers have examined the effect of a number of experimental condi-
tions on the near-miss. including background noise (e.g. Viemeister. 1972: Moore
and Raab. 1974: Hanna et al.. 1986: Neff and Jesteadt. 1996). tone frequeuncy
(e.g. Schacknow and Raab. 1973: Penner ct al., 1974; Jesteadt et al.. 1977: Long
and Cullen. 1985: Florentine et al.. 1987: Buus and Florentine. 1991: Schroder
et al.. 1994: Ozimek and Zwislocki. 1996). tone duration (e.g. Green et al.. 1979:
Florentine. 1986: Buus and Florentine. 1991). tone presentation as continuous or
gated (e.g. Green et al.. 1979: Viemeister and Bacon. 1988). and hearing ability
of the listener (c.g. Florentine et al.. 1993: Schroder et al.. 1994: Gallégo and
Micheyl. 1998). A number of models of loudness coding (see Florentine et al..

]

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



1987: Hellman and Hellman. 1990: Allen and Neely. 1997) and some physiological
mechanisms (e.g. Gallégo and Michevl. 1998) have been proposed to account for
these effects.

This interest in the near-miss has generated discussion of how best to cap-
ture the phenomenon functionally and display it graphically—sece Rabinowitz
et al. (1976): Jesteadt et al. (1977): Grantham and Yost (1982): Scharf and Buus
(1986): Florentine (1986): Florentine et al. (1987): Viemeister and Bacon (1988)
and Nelson et al. (1996) in this regard. Especially relevant to our paper is the

discussion comparing the two threshold measures
10log(A,(x)/xr) and 10logi&,(r)/x) = 10log[(r + A, (x))/r].

The measure 10log(A,(r)/r) may provide less variability in the threshold esti-
mates at higher thresholds (Jesteadt et al.. 1977: Viemeister and Bacon. 1938:
Nelson et al.. 1996) and is less compressive than 10log(&, (r)/xr) (Viemeister and
Bacon. 1938). while 10log(&,(r)/r) is seen as a more direct measure of the inten-
sitv discrimination being made (Florentine et al.. 1987: see also the Summary and
Comments section below) and may be proportional to the sensitivity measure d'.
allowing the calculation of thresholds corresponding to criteria other than those
used empirically (Rabinowitz et al.. 1976: Florentine et al.. 1987: see also the

discussion of Thesis 3 below).

9
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Our aim is not to address directly the issue of <which measure—
10 log(A,(r)/x) or 10log(€,(r)/r)-—is preferable. Indeed. the choice between
the two may depend upon the circumstances and the purpose of the experiment.
Rather, we argue that there is a substantive difference between the linear models
arising from these measures: one of the models is consistent with the data ob-
tained via averaging. and the other is not. We discuss the inconsistency in our

first thesis:

Thesis 1. If both Eq. (4.10) and the balance condition are satisfied (byv design

or otherwise). then a(v) =1 for all v # 5.

This thesis. which is examined shortly, embodies an obvious admonition
against the use of Eq. (4.10) in modeling intensity discrimination data. An al-
ternative model. one that fits many data as well as Eq. (4.10). represents &, as a

power function:

Thesis 2. Many well-known. pure-tone intensity discrimination data support the
hvpothesis that £,(r) grows as a power law of r. that is

(4.11) &(r) = K(v) r),

in which 3(v) > 0 and K'(v) > 0 are parameters that mayv depend tpon
the value v of the criterion. In many important cases. the estimated value of

the exponent 3(v) in (4.11) is svstematicallv less than 1 (for .70 < v < .80).
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Thesis 2. useful in that it offers an empirical alternative to Eq. (4.10). also

may be used to establish the following:

Thesis 3. For theoretical reasons. the exponent 3(v) in (4.11) must be noncon-

stant in those situations in which the balance condition holds.

We consider these theses in turn.

4.2 Discussion of Thesis 1

The power law. ubiquitous in psvchophysical modeling. has been emploved in the
form of Eq. (4.10) to describe several empirical situations involving svstematic
deviations from Weber's law (cf. Baird and Noma. 1978). These situations. which
include judgments of line lengths (Guilford. 1932: Hovland. 1938) and discrimi-
nations of pure-tone intensities (sce the studies in Table 1.1). often give data that
are adequately fit by Eq. (4.10). with an exponent a(v) less than 1 and greater
than about .5. Some authors have questioned the psychological relevance of such
a result {e.g. Narens and Mausfeld. 1992). and our arguments. though different
from theirs. also question the validity of Eq. (4.10) in these contexts.

As discussed above. frequently the balance condition (4.7) is enforced in the
collection or analysis of these data, especially when data are obtained through
comparisons of stimulus pairs. It is important to realize that the balance condi-
tion greatly limits the scope of empirical situations to which Eq. (4.10) may be
applied as a mathematically consistent model. Put another way. Eq. (4.10) ob-

31
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tains as a mathematically consistent model of deviations from Weber's law only
when the balance condition does not hold. These facts may be stated precisely

as follows:

Theorem 4.1. Suppose that A, (zr) = C(v) r*™) holds for all intensities r. with
a(v) > 0 for all v and C(v) strictly increasing withv. If P(x.y)+ P(y.r) =1 for
all probabilities P(r.y). then a is a constant function equal to 1 (except possibly

at v = .5). i.e.. a(v) =1 for all criteria v (except possibly v = .3).

Thus. the balance condition and Eq. (4.10) are inconsistent with a deviation
from Weber's law. insofar as the balance condition and this equation together
imply a coustant exponent equal to 1.

Notice that the hypotheses involving the positivity of a and the monotonicity
of ' in Theorem 4.1 are highly plausible empirically. A non-positive value of
a(v) gives a Weber function measure A, () that is not strictly increasing with r
for large criteria v (say. v > .5) or not strictly decreasing with r for small v (sav.
v < .5). which clearly contradict experience in situations to which Eq. (4.10) has
been applied.? The plausibility of C'(v) increasing strictly with v follows from the
fact that C'(v) equals A, (1) (set r equal to 1 in Eq. (4.10)). whicn itself should
be strictly increasing with v.

The following is instrumental in our proof of Theorem 4.1:

2 See however the discussion in the Summary and Comuments section regarding the fitting

of data which deviate fromn the near-miss.

on
"~
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Fact 1. Suppose that the equation AzP = r + Br? holds for all positive real

numbers r. with A and B nonzero constants. Thenp =q = 1.

A proof of Fact 1 appears in Appendix B. Our proof of Theorem 1.1 also relies

on the following fact. appearing in Falmagne (1985):

Fact 2. The balance condition holds for all intensities if. and only if. £, and &;_,

are inverse functions for all v.

To say that &, and £,_, are inverse functions means that

(412) El—u[fu(-[)] =&

for all mntensities r. (The notation &;_,[§,(r)] means that first the function &,
is applied to . and then the function &,_, is applied to the result.) Equation
(4.12) arises from the definition of £, given in (4.3). which is tantamount to
stating that P(r.€,(r)) = v. and from the balance condition. which then gives
P(&,(r).r) = 1 —v. This latter expression is equivalent to (4.12) by the definition
of &,

We turn now to the proof of Theorem 4.1. Suppose that the balance condition
and Eq. (4.10) hold. with a and C having the specified attributes. The balance
condition dictates that P(r..r) = .5 for all intensities r. which gives 5(r) = r
by (4.3). Thus. As(xr) = 0 for all r. and so C(.5) = 0 with a(.5) arbitrary.
This explains the parenthetical consideration® given v = .5 in the statement of

Theorem 4.1.

3 As pointed out to us by Geoff Iverson. supposing that o is continuous ir v (a reasonable
- (=]

assumption) avoids the need for this parenthetical consideration.

83
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We assume for the rest of the proof that v # .5. This implies that C'(v)C(1 —
v) < 0. since C is strictly increasing in v and C(.5) = 0.

The equation

(4.13) &(r) =1+ Cv)r°™

(arising from (4.8) and (4.10)) and Fact 2 together give the equalities

=8 .,[6(r) [by Fact 2]
= &.(r) + C(1 = v)[E, (r)]t-¥) [by (4.13)]
=r+Cw)r™™ +C(l - v)r + Cv)r)t-v [by (4.13)].

This implies
(4.14) ~Cw)r"™ = C(1 = v)fr + Cv) et

Since (1 —v) # 0 and C(1 — v) # 0. we may rewrite Eq. (4.14) as

alv)

(4.15) F(v)rsi=o = r + C(v)r"",

Cil-v)

where F(v) = ('C“'“ )Tll:n An application of Fact 1 gives a(v) = 1. and
Theorem 4.1 is established.?

Theorem 4.1 thus casts doubt on the validity of Eq. (1.10) as a model of
deviations from Weber's law. Equation (4.11) provides an alternative model. one

without the logical inconsistency of (4.10) (although the balance condition does

1 As pointed out to us by an anonymous reviewer. from (4.15) and a(v) = 1 it follows
that C(1 -v) = l'—:—‘[l—') This means that under Eq. (4.10) and the balance condition. the

psychometric function cannot be symmetric about its point of subjective equality (which would

entail C(1 - v) = -C(v)).
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impose an important and interesting constraint on the exponent in Eq. (4.11)—
see the discussion of Thesis 3). Of course. the appropriateness of Eq. (4.11) hinges
on its fitting of data which deviate from Weber's law. This topic is examined in

the next section.

4.3 Discussion of Thesis 2

In many studies. pure-tone intensity discrimination data are plotted as
10log(A, (r)/r) versus r in dB. with the usual observation that the logarith-
mic transform of Eq. (4.10) provides a good fit over a broad range of intensities
and for a variety of experimental conditions (e.g. Jesteadt et al.. 1977: Viemeister
and Bacorn. 1988: Schroder et al.. 1994: Neff and Jesteadt, 1996). The data have
also been plotted with A, (r) in dB as the ordinate. with of course the same ob-
servation: see McGill and Goldberg (1968a.b): Penner et al. (1974): Green et al.
(1979): Hanna et al. (1986). As just argued. however. Eq. (4.10) is highly suspect
as a model for these data. We propose the simple alternative of Eq. (1.11).

We compare in Table 4.1 the least-squares fits of logarithmic transforms of
{(4.10) and (4.11) to fortv-six data sets from ten well-known studies. In each
of the studies. N, () was the index used in presenting and analvzing the data.

so in particular the parameter and goodness-of-fit estimates in the table were

o
<
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calculated via the equations

(4.16) log A, (r) = log(C(v) r*¥) [replacing Eq. (4.10)]
and
(4.17) log A, (x) = log (K(v) £’ - I) [replacing Eq. (4.11)].

The values presented in the table are in keeping with the original analyses of
the data: we averaged over subjects and/or restricted the fits to certain intensities
only when done so in the original studies.®> As indicated in the table. the data
from these ten studies cover a wide range of experimental conditions.

Comparison of the root mean square errors indicates that (4.16) and (4.17)
fit the data very similarly. Indeed. as illustrated in Figures 4.2 and 4.3. the
graph of Eq. ({.11) in dB coordinates for A, (r) and r is very close to that of
Eq. (4.10) in these coordinates over the range of intensities tested and for the
parameter estimates obtained. Graphs of (4.10) and (4.11) in the coordinates
10log(A,(r)/x) versus r in dB (Figures 4.3 through 4.7) tell a similar story.
The nonlinearity of Eq. (4.11) in these coordinates is apparent at very high
intensities. however. and though this may be advantageous in fitting some data
sets (i.e. Figures 4.6 and 4.7). it is unlikely that (4.11) holds in general at
very high intensities. Such is probably the case for (4.10) as well (see especially

Viemeister and Bacon. 1988. Figures la and 2).

> This averaging over subjects is vulnerable to criticisin (see the Summary and Comments
section below). We emploved it only to give an appropriate comparison to the results reported

in the original studies.
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Table 4.1:  Least squares fits of the equations 10log A,(r) = 10log(C'(v) £**)
and 10log A, (r) = 10log(A(v) '™ — 1) to well-known data. along with the
corresponding estimates of a(v) and 3(v). ?

Source Data Reported Estimated Estimated
Set a(v) a(v) (RMSE)  J3(v) (RMSE)
McGill & Goldberg® Figure 2¢ 935 919 (1.62) 9384 (1.63)
(1968a: 1I-2AFC) (v =.75)
McGill & Goldberg®  Figure 2¢ 905 901 (.82) 973 (.74)
(1968b: 1I-2AFC) (v =.75)
Schacknow & Raab Table 1
(1973: 2IFC) 250 Hz: Sl .89 89 (.14) 98 (.30)
(v =.75) 250 Hz: S2 91 91 (.71) 98 (.56}
1000 Hz: St .87 87 (.71 97 (.38)
1000 Hz: S2 .92 92 (.92) 98 (.79)
4000 Hz: S1 37 ST (.94) 93 (.60)
1000 Hz: S2 87 87 (L.27) 95 (.99)
7000 Hz: S1 81 S (1.32) 97 (.69)
7000 Hz: S2 .88 .83 (1.46) 96 (1.21)
Penner et al. Figure 14
(1974; 2IFC) 150 Hz .86 85 (.85) 92 (.71
(v =.75) 250 Hz .89 90 (.94) 97 (.84)
1000 Hz .86 87 (A7) 96 (43)
G000 Hz .88 38 (.55) 95 (.63)
9000 Hz 81 S (.36) 93 (.19)
Figure 2¢
9000 Hz: Sl .82 30 (.50) 96 (.83)
12000 Hz: S1 92 90 (.00) 97 (.04)
9000 Hz: S2 84 85 (.24) 96 (.28)
Jesteadt et al. Tables B-I 928 927 (.77) 987 (.79)
(977: 2IFC) and B-II
(v =.71)

*Both reported and computed a(r) values are given to indicate possible inaccuracies in
reading graphed data. RMSE stands for root mean square error. 1[-2AFC stands for one-
interval, two-alternative forced choice. 2IFC stands for two-interval forced choice. and 3AFC
(resp. 3IFC) stands for three-alternative (resp. three-interval) forced choice.

PMcGill & Goldberg examined just-noticeable decrements in intensity. J(v) was calculated
accordingly.

“Restricted to standards greater than 20 dB SL.

4Restricted to standards at least 30 dB SL.

“Restricted to standards greater than 30 dB SL. Figure 2 also coutains another data set.
but since it has only two points. it is omitted from this table.

o
~1
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Table 4.1 (continued).

Source Data Reported Estimated Estimated
Set a(v) a(v) (RMSE)  3(v) (RMSE)
Green et al. Figure 1°
(1979: 2IFC) 10 ms 867 .860 (.82) 948 (.73)
(v=.71) 100 ms 884 867 (.50) 984 (.12)
Figure 2f
50 ms .860 .850 (.94) 985 (1.29)
200 ms .870 875 (.71) 991 (L97)
800 ms .907 900 (A47) 994 (.69)
Figure 3
10 ms .897 907 (1.72) 952 (1.66)
100 ms .868 887 (.27) 963 (.48)
Hanna et al. Figure 2f
(1986: 2[FC) in quiet 94 94 (2.05) 93 (2.04)
(v=.79) in noise .90 89 (L.51 97 (1.43)
Viemeister & Bacon Figure 2
(1988: 2IFC) gated® 92 92 (.98) 98 (.70)
(v=T71) continuous” 91 91 (.57) 99 (.56)
Schroder et al. Figure 2 (quiet)
(1994: 3IFC) 300 Hz: N1 837 896 (1.16) 979 (1.42)
(v =.71) 300 Hz: N2 942 953 (1.54) 991 (1.52)
300 Hz: N3 936 938 (1.42) 989 (1.45)
500 Hz: N1 963 960 (1.43) 992 (1.43)
500 Hz: N2 961 O4T7 (1.32) 992 (1.34)
500 Hz: N3 .902 908 (1.53) 982 (1.3%)
1000 Hz: N1 934 933 (1.54) 980 (1.60)
1000 Hz: N2 933 940 (.63) 939 (.T4)
1000 Hz: N3 .389 8393 (1.41) 978 (1.69)
2000 Hz: N1 887 879 (1.26) 964 (1.51)
2000 Hz: N2 900 907 (.84) 980 (.91)
2000 Hz: N3 879 874 (1.37) 978 (1.50)
3000 Hz: N1 912 8390 (1.18) 970 (1.51)
3000 Hz: N2 .906 910 (1.206) 983 (1.46)
3000 Hz: N3 .869 880 (1.54) 981 (1.63)
Neff & Jesteadt Figure 2 .88 89 (A1) 95 (.31)
(1996: 3AFC)
(v =.79)

“Restricted to standards greater than 30 dB SPL.
fRestricted to standards greater than 0 dB SL.
“Restricted to standards from 20 to 95 dB SPL.
hRestricted to standards from 20 to 85 dB SPL.
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Figure 4.2: Plot of A, (r) = C(v) r** in the coordinates A, (r) dB SL versus
r dB SL. The estimates for C(v) and a(v) were obtained via least squares fit of
10log A, (r) = 10log(r*”C(v)) to the data shown. The root mean square error
for this fit is 2.05.
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Figure 4.3: Plot of &,(r) = K'(v) r** in the coordinates A, (r) dB SL versus r
dB SL. The estimates for A'(v) and 3(r) were obtained via least squares fit of
10log A, (r) = 10log(r? K (v) — r) to the data shown. The root mean square
error for this fit is 2.04.
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Figure 4.4: Plot of A, (r) = C(v) r** in the coordinates 10 log(\, (r)/r) versus
xr dB SPL. The estimates for C'(v) and a(v) were obtained via least squares fit of
10log A, (1) = 10log(r*“'C(v)) to the data shown. The root mean square error

for this fit is 1.32.
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Schroder et al., 1994, Figure 2 (N2, 500Hz)
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Figure -1.5: Plot of &,(r) = A'(v) r’* in the coordinates 10log(\,(r)/r) versus
r dB SPL. The estimates for A'(v) and J(v) were obtained via least squares fit of
10log A, (r) = 10log(r? K (v) — r) to the data shown. The root mean square
error for this fit is 1.34.
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Viemeister and Bacon, 1988, Figure 2 (continuous standards)
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Figure 4.6: Plot of A, (x) = C(v) r** in the coordinates 10log(N,(r)/r) versus
r dB SPL. The estimates for C(v) and a(v) were obtained via least squares fit of
10log A, (r) = 10log(r**'C'(v)) to the data shown. The root mean square error

for this fit is 0.57.
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Viemeister and Bacon, 1988, Figure 2 (continuous standards)
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Figure 4.7: Plot of &,(r) = A'(v) ') in the coordinates 10log(\,(r)/r) versus
r dB SPL. The estimates for A'(v) and J(v) were obtained via least squares fit of
10log A, (r) = 10log(r™ K (v) — r) to the data shown. The root mean square

error for this fit is 0.56.
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The data examined in Table 4.1 support Eq. ({.11) for the wide range of exper-
imental conditions examined. We are not suggesting that this equation describes
the data obtained in other experiments. namely those involving extreme stimu-
lus intensities or frequencies. in which the near-miss as modeled by Eq. (4.10)
is known to fail (Ratinowitz et al.. 1976: Long and Cullen. 1985: Hanna et al..
1986: Florentine et al.. 1987: Viemeister and Bacon. 1988: Hellman and Hellman.
1990). Rather. we maintain that the many data adequately described by (4.10)
also are adequately described by (4.11). though the latter does not share the
logical incounsistency of the former.

We also assert in Thesis 2 that. in manyv important cases. the estimated value
of the exponent in (4.11) is svstematically different from 1. and indeed this is
true for the data in Table 4.1. However. the estimates of .J3(v) in Table | are
much closer to 1 than the corresponding estimates of a(r). and it may be argued
that an experimenter could consider these 3(v) estimates as revealing Weber's
law without the near-miss. This position would not be justified because the
discrepancy is systematic: the estimates of .3(v) are less than 1 in all cases in
Table 4.1. Moreover. in view of our argument that .J(v) is nonconstant with v (see
the discussion of Thesis 3 below). one may very well observe a larger deviation
from 1 for different values of v (e.g. v closer to 1). Data collected in our own
laboratory confirm this conjecture (Falmagne et al.. 1996: Doble et al.. 2002,
submitted). It mayv also be possible to magnify this deviation by increasing the

delay between the intervals in which the stimuli appear. (See Hellstrom. 1979 for
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a study of this manipulation: see Florentine. 1986 for related analyses.)
The appropriateness of Equation (4.11) for these data is a key component in

our discussion of Thesis 3.

4.4 Discussion of Thesis 3

Many previous experimenters have. unwittingly, obtained data which establish
our Thesis 3. namely. that the exponent 3(v) in (4.11) must be nonconstant with
v. As established earlier. the common manipulation of averaging over order (or
position) of stimulus presentation results in the balance condition. This produces
a mirror condition on the exponent J3(v) in Eq. (4.11). We will show that—

whether or not J(v) is constant --the balance condition implies
(4.18) Jw)i(l-v)=1

for all criterion values v. This result is well known (cf. Falmagne. 1994). For
completeness. we include a proof. which is based on Fact 2 and the following

fact:

Fact 3. If Eq. (4.11) holds. then for all criterion values v and all intensities r

and Ar (A > 0). we have
(4.19) S (Ar) = MWe ().
Indeed. assuming (4.11). we have successively

&(Ar) = K(v)(Ar)" = MW K (v) 7 = NVWe (1),
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Equation (4.18) results from the following string of equalities:

Ar =&, [& (A7) [by Fact 2]
= &, MV (1) by (4.19)]
= \WI=ve  le (r)] [by (4.19)]
= \HWd=y) g [by Fact 2].

Dividing by & > 0 on both sides vields A = \J@31=¥) which in turn gives (4.18)

because we can choose \ # 1.

Thus. (4.11) and the balance condition imply (4.18). Note that. in (4.18). if
J(v) = B. a positive constant, then B = 1. This implies that if .3(v) # 1 for
sone value v of the criterion. then .3 cannot be a constant function of v.

We have shown that Thesis 2 holds for data from ten well-known studies. In
addition. to the best of our knowledge. the balance condition was enforced in at
least six of those studies. viz.. those involving 2IFC tasks. Thus. the data from
these six studies suggest a nonconstancy of the exponent in (4.11).

[t is natural to ask how .3(v) might be expected to vary with v. The estimated
J(v) values are consistently less than 1 for the studies examined and were obtained
for criterion values v greater than .5. A glance at Eq. (4.18) reveals that. in these
cases. one should expect the estimated values of J(1 — v) to be greater than
1. (Note also that Eq. (4.18) implies 3(.5) = 1.) We have obtained results
in our own laboratory. based on extensive data from three subjects. confirming

this prediction. In addition. our investigations regarding the specific functional
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dependence of .3 on v suggest that 3 is a decreasing function of v (for .16 <
v < .84). One may be able to magnify a deviation from Weber's law simply by
increasing the discrimination criterion® (Falmagne et al.. 1996; Doble et al.. 2002.
submitted). In any event. we conclude that Thesis 3 is well founded. at least in
those situations in which J3(v) is not equal to 1 for at least one value of v and
the balance condition holds by design or otherwise. This result indicates that. in
empirical studies of discrimination. much more attention should be paid to the

criterion v than has been the case in standard practice.

4.5 Summary and Comments

Comparisons of the indices A, (r) and &, (r). via the measures 10log(A,(r)/r)
and 10 log(€,(r)/r). are common in the near-miss literature (Jesteadt et al.. 1977:
Grantham and Yost. 1982: Scharf and Buus. 1986: Florentine et al.. 1987: Viemeis-
ter and Bacon. 1988). with competing arguments advanced for A, (r) (Jesteadt
ct al.. 1977: Viemeister and Bacon. 1988; Nelson et al.. 1996) and for &,(r) (Flo-
rentine, 1986: Florentine et al.. 1987). We have not claimed here that one of the
measures is generally preferable to the other. though our results should illuminate
the discussion comparing the two. What we have shown is that the near-miss to
Weber's law Equation (4.10)—A,(r) = C(v) £ with a(v) # 1—carries a logi-

cal inconsistency with a standard empirical technique involving an averaging over

5 Table 4.1 is not especially helpful in examining this result because of the many experimental
conditions represented. including tone frequency. tone presentation as continuous or gated. and

intensity range, which likely affect 3.
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conditions. We have also presented evidence from a large collection of data that
&.(x) is. to a good approximation. modeled by the power law Equation (4.11).
In the range .70 < v < .80. the estimated values of the exponent 3(v) of (4.11).
while being greater than those of the exponent a(v) of (4.10). remain systemati-
cally less than 1. We have derived an important theoretical consequence of this
evidence. namely that the exponent 3(v) cannot be constant with the discrimi-
nation criterion v. at least in those situations in which the balance condition is
enforced by averaging over order of presentation in a comparison pair. It scems
likely that this nonconstancy will occur in other cases as well. and indeed this is
confirmed by data collected in our own laboratory (Falmagne et al.. 1996: Doble
et al.. 2002, submitted).

An additional comment concerning A, (r) and &,(r) should be made. The
relationship between the two is perhaps more subtle than it appears. Note that
the graph of Figure 4.1 is predicated on the assumption that P(r.r) = .5. or
equivalently, that the ‘point of subjective equality’ of r is equal to r. i.e.. §5(r) =
r. Since there are important cases in which this assumption does not hold—for
instance. when there are order biases in the 2IFC paradigm in psyvchoacoustics-—
it is legitimate to ask whether the Weber function A, should be computed from

A (r) =& (r) — r or from
(4.20) Au(r) = &(0) = E5(0).

This question is usually answered out of convenience in pure-tone intensity dis-
crimination experiments: the stimuli consist of a 'masker’ and a ‘masker plus
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signal.” and A, (r) is determined directly from measurement of the signal. How-
ever. we know of no compelling theoretical reason for advocating (4.8) over (4.20)
in this situation or in any other in which £5(r) and r may be different.” Direct use
of the measure &,(r) does not require such a choice. which can have an important
impact on the interpretation of the data.

As noted. we have compared Equations (4.10) and (4.11) only for near-miss
data that were originally described using Eq. (4.10). These data typically were
obtained for stimulus levels greater than about 30 dB. However. the near-miss
as given by Eq. (4.10) is known to fail at low intensities (e.g. Hanna et al.. 1936:
Viemeister and Bacon. 1983: Hellman and Hellman. 1990). Substitutes for (-.10)

such as
(4.21) A (z) = C(W)[x + Lo(v)]*™

have been used to model this fact. in which ro(v) > 0 is interpreted as an
‘internal noise” parameter (Viemeister and Bacon. 1988). Unfortunately. whereas
this model gives a good fit to such data. it shares the inconsistency of (4.10):
under the balance condition. the exponent a(v) in (4.21) must equal 1 for all
v # .5. (Arguments nearly identical to those which establish Theorem 4.1 may

be used to show this.) A natural generalization of Equation (4.11). the equation
(4.22) A (r) = K()[r + o, (v)]"™ - .

in which r;(v) > 0 is an additional parameter. provides a fit to six data sets (from

“ As pointed out to us by an anonymous reviewer. these considerations may cast doubt on

the interpretation of A, (r) as a *psychological magnitude’ (Narens and Mausfeld. 1992).
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Viemeister and Bacon. 1988, Figure 3) which is nearly identical to that of (4.21).
However. Eq. (4.22) is subject to a similar criticism as Eqs. (4.10) and (4.21):
under the balance condition. r|(v) must equal 0 for exponents 3(v) other than
0 or 1. One is left with the task of finding sensitivity functions &, which both
provide a good fit to these deviations from the near-miss and are consistent with
the balance condition. i.e.. satisfv (4.12) without ensuing contradiction. Several
authors have suggested using a combination of two or more power functions for
modeling these and other data which deviate from the near-miss (Rabinowitz
et al.. 1976: Long and Cullen. 1985: Hanna et al.. 1986: Florentine et al.. 1987).
This should be regarded as a last resort solution. At this point. we leave this
matter as an open problem.

Some readers may be puzzled that an inconsistent set of assumptions could
vield models that. in the guise of Egs. (4.10). (4.21). or (4.22). fit manyv data so
well. We wish to make clear that our criticism of these equations is a logical one.
not an empirical one. To use a famous historical example. a model describing a
planet’s orbit in terms of a structure of epicycles may fit astronomical data quite
well if the number of epicvcles is large. but such a model would be inconsistent
with the equations of classical physics and therefore subject to criticism in the
Newtonian framework.

Finally. our discussion carries an implicit general warning regarding the aver-

aging over conditions often performed in the controlling for variables regarded as
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extraneous.® Such an averaging is legitimate only in those special circumstances
in which the model entertained by the scientist is robust to this averaging. that
is. the averaging vields a model of the same form, with different parameters. The

same caveat applies of course to the averaging over subjects.

4.6 Appendix A

We illustrate with two examples the enforcing of the balance condition vijkna
an averaging over conditions. Consider first the experimental situation in which
the pairs (r.y) and (y.r) are presented to the participant an equal number of
times over the course of many trials. with the participant reporting on each trial
which member of the pair appears greater. Identifving probabilities and relative
frequencies of responses. we clearly have that (4.4) holds. Now. it could be that
there are no order biases for r and y. in which case Py(r.y) = Ps(y.r). and
substitution into (4.4) gives the balance condition. However. even if there are
order biases, disregarding order information exactly corresponds to determining
a single psychometric function P(r.-) that satisfies Eq. (4.6). (If (r.y) and (y. r)
are not presented an equal number of times. then the averages of P, and P in

Eq. (4.6) arc weighted averages. but the balance condition (4.7) is still enforced.)

* This tendency is a likely misdeed of the ritualistic toaching of the analysis of variance in

the soctal sciences.
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The second illustration involves the common situation in which an up-down
method (e.g. Levitt, 1971) is used to determine the psychometric function. A
priori. we have the two sensitivity functions &; , and £, , of P, and Ps. respectively.

defined by the two equivalences
Si.(r)=y<= P(y.r)=v and & (1) =y < Py(r.y)=v.

In this situation. a probability v is fixed along with a value r and. in either
of the two orders of presentation. the value y is determined such that y is judged
as greater than r with probability v. In the tyvpical case. r is equally likely to
appear in the first or second interval on a given trial. so that y is necessarily
between &, (r) and &, (r) (or equal to them. if there is no order bias). As the
two psychometric functions Py(-.r) and Py(r.-) are linear and parallel in the
small region from &, , () to &, (r). we have that y is simply (&, (r) + & (1))/2.
and the point P(r. y) estimated on the single psychometric function is (P (y.r)+

Pa(z.y)}/2.

4.7 Appendix B
The following is a proof of Fact 1. which states that if the equation
(4.23) AP =r+ Bt

holds for all positive real numbers r. with 4 and B nonzero constants. then

p=q=1.

103

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Note that 4 = 1 + B. which is obtained by setting r = 1 in (4.23). Choose

a positive real number A such that A # 1. and substitute Ar for r in (4.23) to

obtain

(4.24) ANLP = Ar + BAN19,
Le.,

(4.25) NP(r+ Br?) = Ar + BAr9,

which upon rearrangement gives
(4.26) (AP = N)r = Br(\ = \P).

If p # 1 then we must have g = 1. since differentiating both sides of (4.26) with

respect to r gives
(4.27) (AP = X) = BqrY(\7 — AP).

and the right-hand side of (4.27) must be nonzero and not varving with r since
the left-hand side is nonzero and not varying with r. But if p # 1 and ¢ = 1.

then from (4.23) we have

(4.28) = <1—:B)I=r.

and this contradicts the fact that p # 1. Therefore. we must have p = 1. and

from (4.26) we must then also have g = 1.
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Chapter 5

Systematic Covariation of the
Parameters in the Near-miss to
Weber’s Law, Pointing to a New

Law

5.1 Introduction

5.1.1 Background

The term ‘near-miss to Weber's law.” coined by McGill and Goldberg (1968a.b).
refers to the slight but svstematic failure of Weber's law occurring for many

pure-tone intensity discrimination data. In particular. data obtained for intensity
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discriminations between pure. 1000-Hz tones presented in quiet show a svstematic
decrease in the Weber fraction with an increase in intensity. rather than a constant
Weber fraction as predicted by Weber's law. More precisely. let us denote by r
the intensity of such a tone and by r+ A(r) the intensity of a similar tone judged
"just-noticeably’ more intense than r. The Weber fraction '\‘—(:—) data in these

experiments are usually well fitted by one of the two power law models
(5.1) Alr)=Cr° (C. a are parameters)

or
(5.2) r+Ar)=Kr? (. 3 are parameters).

with the exponents a and .3 estimated to be slightly less than one. Weber's law
obtains when a or .3 equal one. The effects of several experimental conditions-

including background noise (e.g. Viemeister. 1972: Moore and Raab. 1974: Hanna
et al., 1986: Neff and Jesteadt. 1996). tone frequency (e.g. Schacknow and Raab.
1973: Penner et al.. 1974: Jesteadt et al.. 1977: Long and Cullen. 1985: Floren-
tine et al.. 1987: Buus and Florentine. 1991: Schroder et al.. 1994: Ozimek and
Zwislocki, 1996). tone duration (e.g. Green et al.. 1979: Florentine. 1986: Buus
and Florentine. 1991). tone presentation as continuous or gated (e.g. Green et al..
1979: Viemeister and Bacon. 1988). and hearing ability of the listener (e.g. Flo-
rentine et al., 1993: Schroder et al.. 1994: Gallégo and Michevl. 1993) — have been

examined in the context of these models.! These examinations have contributed

! Equations (5.1) and (5.2) fit a diversity of pure-tone intensity discrimination data obtained

over a rather broad ranege of stimulus frequencies (sayv. 250-8000 Hz) and magnitudes (roughly
(o] q - (<] [»] -
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to the regnant explanation for the near-miss. which is that. while Weber's law
may apply for a single auditory "channel.” an increasing spread of excitation to
channels tuned to frequencies above that of the stimulus occurs as stimulus in-
tensity is increased. resulting in improved discriminability at higher intensities
(Florentine and Buus. 1981: see also Florentine. 1986. Viemeister and Bacon.
1988. Schroder et al.. 1994). A corpus of recent work incorporates the results of
these investigations. along with the spread-of-excitation explanation. in the con-
struction of models of the neural activity driving loudness coding (sce Hellman
and Hellman. 1990: Allen and Neely. 1997. and the references therein).
Throughout this research. however. little attention has been given the possible
effect of subordinate experimental factors. such as the choice of discrimination
criterion. on the near-miss. This paper contains considerable data which confirm
a theoretical argument that the amount of deviation from Weber's law depends
systematically upon the discrimination criterion used. In particular. the data give
strong evidence that the exponent .7 in Eq. (5.2) is a (strictly) decreasing function
of the criterion. Moreover. the data point toward a systematic covariation of the
parameters J and A in Eq. (5.2). which suggests a submodel of Eq. (5.2) in which
Jand K are related through a fixed-point property. This submodel is consistent
with a notion of top-down control of intensity coding proposed by Parker and

Schneider (1994) and Schneider and Parker (1990).

30 to 90 dB SL). and via a variety of methods. However. they fail to provide an adequate
description of data obtained using extreme stimulus frequencies or intensities (e.g. Rabinowitz
et al.. 1976: Long and Cullen. 1935; Hanna et al.. 1986: Florentine et al.. 1987: Viemeister and

Bacon. 1938: Hellman and Hellman. 1990).
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In what follows. r and y denote tone intensities (measured in ratio scale units.
e.g. watts/m?) in a two-alternative. forced choice task. (For convenience in the
exposition, a tone and its intensity are identified. so that r and y refer both
to tones and to tone intensities.) The tone judged more intense than r with
probability exactly equal to v is written §,(r). The Weber function A mav be

defined in terms of the function £ by the equation
(5.3) Ay(r) =& (1) — 1.

An empirical estimate of the value &,(r) will be called an estimated signal level.
Note that, for sufficiently small v. this estimate will be less than r.

The near-miss often is presented via Eq. (5.1). with estimates of a consistently
less than one (e.g. McGill and Goldberg. 1968a.b: Schacknow and Raab. 1973:
Penner et al.. 1974: Jesteadt et al., 1977: Green et al.. 1979: Hanna ct al.. 1936:
Viemeister and Bacon. 1988: Schroder et al.. 1994: Neff and Jesteadt. 1996). How-
ever. some authors have questioned the appropriateness of Eq. (3.1) as a model of
deviations from Weber's law. For instance. Narens and Mausfeld (1992). using a
measurement-theoretic approach. argue against the psyvchological significance’ of
this equation. Doble et al. (2003) show that. following an averaging over order of
stimulus presentation in a two-interval. forced-choice (2IFC) task. the exponent

a in Eq. (5.1) is forced mathematically to equal one.? This conflicts with the

*This averaging typically comprises the estimation of a single signal level for a given referent
and a given criterion. with the signal level estimnate obtained via a design that allows the referent
to appear in the first or second interval with equal probability (e.g. Schacknow and Raab. 1973:
Penner et al., 197-1; Jesteadt et al.. 1977: Green et al.. 1979: Hanna et al.. 1986: Viemeister and
Bacon. 1988).

108

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



typical exponent estimates. which hover around 0.9 (e.g. Schacknow and Raab.
1973: Penner et al.. 1974: Jesteadt et al.. 1977: Green et al.. 1979: Hanna et al..
1986: Viemeister and Bacon. 1988). These results cast doubt on the validity of
Eq. (5.1) as a model of deviations from Weber's law. even though this equation
provides a good fit for many data. Doble et al. (2003) also show that Eq. (5.2)
gives a fit similar to that of Eq. (5.1) for many data originally described using
Eq. (5.1). but that Eq. (5.2) does not share the logical inconsistency of Eq. (5.1)
arising from its typical parameter estimates. For these reasons. the near-miss
is modeled in this paper using Eq. (5.2). (Compare Osman et al.. 1980: Scharf
and Buus. 1986: Florentine et al.. 1987. 1993: Ozimek and Zwislocki. 1996: Zeng,.

1998.)

5.1.2 Preview

In the following sections. an argument is made on both theoretical and empirical
grounds that the parameters J and A" in the power law model Eq. (5.2) varv

systematically with the criterion v. This model is written as
= c — - !}(ll)
(5.4) £,(r) = K(v) ',

with the implication that .3 and A" may be nonconstant functions of v. It is clear
from Eq. (5.4) that A" should vary with v: by definition. £,(1) is an increasing
function of v. and &£,(1) equals A'(v) in the model. The argument that .3 varies

with v is outlined shortly. The data strongly support not only the variation of
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both parameters. but also a specific covariation that suggests a submodel of the

form

3(v)
(5.5) §(x) _ (_{) .

in which r, and y. are parameters. Thus. the value A'(v) in Eq. (5.4) mayv be

written as
(5.6) K) =y, 77",

The experimental evidence suggests that r. and y, are very close in value. with the

value corresponding to an intensity near the top of the normal range of hearing.

5.1.3 Variation of the Exponent with the Criterion: The-
ory
Falmagne (1935. 1994) has shown that the near-miss exponent should. in princi-

ple. vary with the criterion v. In particular. he argued that if Eq. (5.4) holds for

data averaged over interval order in a 2[FC. then necessarily

—~—
Ut
~1

N’

Jw) 3l —-v)=1

(See these references for a proof.) An immediate consequence is that. if the expo-
nent .3 is a constant function of v under the balance condition, then necessarily
J(v) =1 for all v. Thus. if it is found that J(v) # 1 for at least one value of v.

then .3 must vary with v.
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Doble et al. (2003) examined a large collection of pure-tone. intensity discrim-
ination data from well-known studies which employed an averaging over interval
order. Thev found that Eq. (5.4) provides a good description of these data. i.e..
a description similar to that of Eq. (5.1). and that the estimates of .3 are consis-
tently less than one (for criteria near 0.75). Coupled with the result in Eq. (5.7).
these analyvses imply that 3 is not a constant function of v. How 3 might be
expected to vary with v under the balance condition can be seen from Eq. (5.7).
Noting that the estimates of J are less than one for criteria greater than 0.5. one
would expect the estimates of 3 to be greater than one for criteria less than 0.5
(and for Weber's law to hold when v = 0.5). If .3 is assumed to be monotonic
and continuous in v. then .3 should be a decreasing function of v.

We know of no previous data from which to compare deviations from Weber's
law across criteria. Though different criteria are used by different rescarchers—
-alues of 0.71. 0.75. and 0.79 all are typical—the variety of experimental con-
ditions employved across studies makes the dependence of the exponent on the
criterion difficult to ascertain from the existing literature. The central aim of
this study is to examine empiricallv the possible dependence of .3 on the crite-

rion.
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5.2 Method

Experiment 1

Two listeners (identified as AT and S6). with normal audiograms. were paid an
hourly rate for participating. Both had extensive experience in psychoacoustic
tasks. though neither had previous training in a pure-tone. intensity discrimina-
tion task.

Signal levels were estimated for various values of the criterion and for various
referent levels. using a 2IFC procedure. On cach trial. two 1000-Hz tones were
presented in successive intervals. The listener reported which interval contained
the louder tone. The trials were divided into blocks of 100. and the listener was
given a few minutes of rest between any two blocks. During each sequence of four
100-trial blocks. the referent level (40. 50. 60. 70. or 80 dB SPL) was fixed and the
level of the comparison tone was adaptively adjusted using a staircase method
(Levitt. 1971). On a trial. the referent level was cither in the first or the second
interval: we refer to these as Tvpe I and Type 2 trials. respectively. Twelve
independent. adaptive tracks were used for each referent level. Specifically. for
each referent level. six values of the criterion—0.16. 0.21. 0.29. 0.71. 0.79. and
0.8-—were considered for cach of the two trial Tvpes. The schedules for the
tracks are given in the appendix.

On each trial. one of these twelve tracks was chosen at random. Each track

began with identical intensities in the first and second intervals. Thereafter. the
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intensity value for a track at the end of a block was the intensity value for the
track at the beginning of the next block using the same referent level. The original
stepsize of 0.4 dB was decreased to 0.2 dB after the third reversal within a block.

An estimate was computed for each track by averaging the levels at the rever-
sal points in the track’s direction. excluding the first ten. Approximately 50-100
reversals (generated by approximately 400 trials) comprise each estimate.® The
track estimates for each of the two trial Tvpes for a given referent and criterion
were averaged to obtain the signal level estimate for that referent and criterion.
Overall. there were 30 signal level estimates for each listener. arising from six
criteria for each of five referent levels.

A random-block design determined the order of referent level conditions. As
mentioned above. four blocks had to be completed for a given referent before the
next one was sampled without replacement. Listeners completed approximately
50 blocks for cach referent level.

Stimuli were generated digitally. plaved at a sampling rate of 25 kHz and
lowpass filtered at 10 kHz. Sounds were presented diotically over Sennheiser HD-
14502 headphones to listeners seated individually in a single-walled IAC sound
booth. Programmable attenuators controlled presentation levels. Tones were
shaped with 20 ms cos®. onset/offset ramps and presented for 300 ms. Inter-

stimulus intervals (ISIs) were 307 ms. Responses were given via kevboard. and

3Due to a programming error. the step size was reset to 0.4 dB at the beginning of each
block and changed to 0.2 dB following the third reversal within that block. Negligible effects
on threshold estimates are expected because of the large number of reversal levels comprising

the average. This programming error was corrected for Experiment 2.
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response time was unlimited. A new trial was initiated approximately 500 ms

after a response.

Experiment 2

Two listeners. both with normal audiograms. participated in Experiment 2. One
listener. CD (the first author). was experienced in pure-tone. intensity discrimi-
nation tasks. The other listener. LN. was naive. The experimental conditions for
Experiment 2 were very similar to those for Experiment 1. Only the differences
are described here.

In Experiment 2. there were eight adaptive tracks for each referent level. one
for each of four criteria and two trial Tvpes. The criteria used were 0.16. 0.29,
0.71. and 0.84. A block was made up of 200 trials. and the referent level was
fixed for an entire block.

Three different [SIs were used: 100. 307. and 1000 ms. (The ISI was varied
in this experiment as a preliminary study of the effect of ISI on the near-miss
parameters.) The ISI was fixed over the course of eight sessions (3000 trials).
For Listener CD. the ISIs followed the order 100 ms. 1000 ms. and 307 ms: for

Listener LN. they followed the order 1000 ms. 307 ms. and 100 ms.
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On each trial. one of the eight tracks was chosen. Tracks involving criteria of
0.16 or 0.84 were twice as likely to be chosen as those involving criteria of 0.29
or 0.71.* Each track began at a level predicted from Experiment 1. The stepsize
was 0.2 dB throughout.

There were 60 different signal level estimates for each listener: one estimate for
each of four criteria. five referent levels. and three ISIs. Estimates were obtained
after excluding the first four reversals in a track’s direction (and then averaging
the estimates from the two track Tvpes. as in Experiment 1). Roughly 30-50
reversals. generated by 100-300 trials. comprise each estimate.

The stimuli were generated as in Experiment 1. The intertrial interval was

750 ms for all trials.

5.3 Results

The data to be analyzed are the estimated values of the function £, for each of
the four listeners. For Listeners AT. S6. and CD. the estimated “level differences’
10 log[%ﬂ]. for v = 0.71. fall between about 0.30 and 2.01. These values are in
good agreement with those obtained in previous experiments using this criterion
(e.g.. Jesteadt et al.. 1977 Ozimek and Zwislocki. 1996: Florentine, 1986: Floren-
tine et al.. 1987). The estimated level differences for v = 0.79 also are consistent

with those of previous studies using this criterion. and range from about 1.0 to

*This was done to improve the efficiency of the data collection procedure. as it allowed the
number of reversals for the tracks with more extreme criteria to be roughly equal to the number

of reversals for the middle criteria.
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2.7 (e.g., Hanna et al., 1986: Neff and Jesteadt. 1996). For listener LN. the level
differences are slightly higher (0.76 to 3.97 for v = 0.71). though not without
precedent (see e.g. Florentine et al.. 1987. listener RS). The experimental meth-
ods used in the present study differ slightly from those of many previous studies.
in that in the present study. listeners were not given feedback. and the signal
level estimates were obtained by averaging track values from the two trial Tvpes.
rather than by computing a single value from a track that includes both trial
Tvpes. No feedback was given because it is unclear that feedback would serve a
purpose in this experimental design: the intensity of the comparison tone may
be greater or less than that of the referent on a given trial. Data were recorded
from both trial Tvpes to investigate possible differences in the parameter values
for the two situations ‘referent in the first interval” and ‘referent in the second
interval.” These investigations will be detailed in future work. I[n view of the
good agreement with previous studies for the data of three of the listeners. it is
unlikely that the lack of feedback or the particular choice of data averaging had
an effect on the results reported in this paper. We cannot explain the greater
variability of the data of Listener LN compared to the data of the other listeners
in this study.

The logarithmic transform of Eq. (5.4) was fit to the data for each value of
v by regressing 10log&,(r) on 10logr. A summary of the fits and parameter
estimates appears in columns 3 through 5 of Table 5.1. The prominent feature

of these values is the clear. systematic variation of J3(v) with v: there is only one
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exception to the strict decrease of 3(v) with v. Furthermore. the estimates follow
the pattern 3(v) < 1 for v > 0.5 and J(v) > 1 for v < 0.5. These observations
strongly support the variation of J predicted from Eq. (5.7). It also is clear from
the table that estimates of K'(v) strictly increase as v increases. as is suggested
by Eq. (5.4).

The fit of the linear model to the data generally is very good. The root
mean square errors are reported in column 5 of Table 5.1. Figure 1 displays the
data sets and the best-fitting lines for each. Though there are some possible
deviations from linearity. these deviations are small and not syvstematic. The
data for Listener LN are more variable than those of the other listeners. but her

data are appropriately fit with a linear model. as seen in the figure.
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Table 5.1: Estimated values of the parameters in the models £, (r) = K (v) W
3(v)
and %’) = (i . The estimates were obtained using the logarithmic trans-

Ie

forms of the respective equations. RM stands for root mean square error. and v
represents the discrimination criterion. The table is continued on the next page.

£,(r) = K(v) £°¥ %‘” = (f—.)JM
v 3(v) 10log K (v) RM | 3(v) 10logr. 10logy. RM
0.16 { AT | 1.028 -3.329 0.141 | 1.028 117.3 117.3  0.141
0.21 1.026 -3.165 0.163 || 1.027 0.164
0.29 1.018 -2.190 0.085 || 1.018 0.085
0.71 0.987 1.621 0.146 || 0.985 0.152
0.79 0.982 2.363 0.095 || 0.977 0.134
0.84 0.965 3.671 0.162 )| 0.971 0.201
0.16 ] S6 | 1.073 -7.383 0.547 || 1.071 108.8 109.2 0.549
0.21 1.066 -6.698 0.231 || 1.065 0.232
0.29 1.040 -4.113 0.198 |} 1.043 0.207
0.71 0.973 2,973 0.157 | 0.981 0.222
0.79 0.970 3.799 0.305 §| 0.968 0.307
0.84 0.965 4.518 0.306 || 0.960 0.325
0.16 | CD | 1.020 -2.090 0.120 ] 1.020 111.0 1111 0.120
0.2910.1s] 1.012 -1.202 0.066 || 1.013 0.067
0.71 0.995 0.756 0.069 { 0.994 0.075
0.84 0.984 1.831 0.087 || 0.985 (.090
0.16 | CD | 1.013 -1.693 0.135 |} 1.014 124.3 124.2  0.135
0.2910.3s 1} 1.006 -0.762 0.074 |} 1.006 0.074
0.71 0.993 0.954 0.157 || 0.992 0.157
0.84 0.986 1.724 0.056 || 0.986 0.057
0.16 | CD | 1.018 -2.174 0.148 || 1.021 115.1 115.1 0.155
029 Ls | L.015 -1.542 0.037 {| 1.013 0.061
0.71 0.992 1.060 0.150 j 0.991 0.152
0.84 0.980 2.279 0.040 || 0.981 0.047
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Table 5.1 (continued).
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£,(z) = K(v) 3w EL—y(_I—) _ (IL.)J(Q

v l 3(v) 10log AK(v) RM || 3(v) 10logz. 10logy. RM
0.16 | LN | 1.133 -13.999 1.138 || 1.126  105.9 1056 1.146
0.29 1 0.1 s 1.053 -6.157 0.977 || 1.060 0.986
0.71 0.946 5.128 0.212 || 0.954 0.2539
0.84 0.896 11.127 0.520 |} 0.889 0.541
0.16 | LN | 1.109  -11.417 0.485 || 1.110  109.7 110.3  0.485
0.29 |1 0.3s | 1.070 -6.966 0.615 || 1.067 0.617
0.71 0.959 4.761 0.263 |{ 0.965 0.281
0.84 0.912 10.410 0.344 || 0.909 0.349
0.16 | LN {1.079 -10.174 1.268 |} 1.099 1278 129.1  1.323
029 1s | 1.079 -6.676 0.485 || 1.049 0.739
0.71 0.971 4.824 0.518 | 0.973 0.520
0.84 0.928 9.963 0.577 |} 0.935 0.593
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Figure 5.1: Plots of intensity discrimination data for listeners AT and CD (100
ms). The syvmbols represent different criteria v: upright triangles for v = 0.16.
stars for v = 0.21. squares for v = 0.29. inverted triangles for v = 0.71. crosses
for v = 0.79. and circles for v = 0.84. The best-fitting lines were obtained by

regression of 10log &, («r) on 10 log.r.
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10 log ¢,(x)/x

Figure 5.2: Plots of intensity discrimination data for listener CD (307 ms and 1000
ms). The svinbols represent different criteria ©: upright triangles for v = 0.16.
stars for v = 0.21. squares for v = 0.29, inverted triangles for v = 0.71. crosses
for v = 0.79. and circles for v = 0.84. The best-fitting lines were obtained by

regression of 10log &,(.r) on 10log r.
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10 log €,(x)/x

Figure 5.3: Plots of intensity discrimination data for listeners S6 and LN (100
ms). The symbols represent different criteria v: upright triangles for v = 0.16.
stars for v = 0.21. squares for v = 0.29. inverted triangles for v = 0.71. crosses
for v = 0.79. and circles for v = 0.84. The best-fitting lines were obtained by

regression of 10log &, (r) on 10 log r.
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Figure 5.4: Plots of intensity discrimination data for listener LN (307 ms and 1000
ms). The symbols represent different criteria v: upright triangles for v = 0.16.
stars for v = 0.21. squares for v = 0.29. inverted triangles for v = 0.71. crosses
for v = 0.79. and circles for v = 0.84. The best-fitting lines were obtained by

regression of 10log &, (r) on 10log r.
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Figure 5.5: Plots of 10log A'(v) versus .3(v). with A'(v) and 3(v) estimated from
the model &,(r) = K{v) r7¥.
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Figure 5.6: Plots of best-fitting lines obtained using the model ‘—y"—’ = (£

Te
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The data points are the same as those in Figures 5.1 and 5.2. and the symbols
have the same meaning as in those figures.
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Figure 5.7: Plots of best-fitting lines obtained using the model %—’—) = (_i )

The data points are the same as those in Figures 5.3 and 5.4. and the symbols

have the same meaning as in those figures.
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Studying Figures 5.1-5.4 convinces that much more is to be culled from the
data than simply the nonconstancy of the parameters 3(v) and K (v). In each of
the eight plots in these figures. the best-fitting lines seem to intersect at a common
point. suggesting a strong covariation between the parameters K(v) and 3(v).
The covariation is seen directly in Figure 5.5: plots of 10log A'(v) versus 3(v)
are linear. These observations suggest that A'(v) and .3(v) are related through

the equation
(5.8) 10log A'(v) = (—10log r.) 3(v) + L0 log y..

with —10logr, the slope and 10log y. the y-intercept in Figure 5.5. Solving Eq.
- . . . -3 . -

(5.8) for K'(v) gives K(v) = r. ) Y.. 50 that the near-miss model (5.4) mayv be
specialized into

c (I‘ r \ .“U)
e = Surts | )
(5:3) v ( )
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Note that, for all values of v in Eq. (5.5). the graphs of 10 log[s"i—”] versus
10log r pass through the same point (10log.r,.10logy. — 10log r.). This is the
property suggested by the convergence of the lines in Figures 5.1-5.4. These lines
were obtained from the general model Eq. (5.4). but the fits change little when
the submodel Eq. (5.5) is used. The slope estimates from the submodel are nearly
identical to those from the general model. and the root mean square error values
are similar as well (see Table 5.1).%

The plots in Figures 5.6-5.7 display the best-fitting lines obtained from (5.5).
along with their fixed points.®

These fixed points have abscissa values corresponding to high intensities (105-
128 dB SPL) and ordinate values close to zero. The latter indicates that the
estimates of r, and y, are nearly equal for a given listener and condition. The
specific estimates are given in Table 5.1. These values were obtained by least-
squares fits of the logarithmic transform of Eq. (5.5) to all the data for a given
listener and ISI condition: similar estimates may be obtained from the plots of
10log A (v) versus 3(v) in Figure 5.5.

Two listeners were tested under multiple ISI conditions as a preliminary inves-

tigation into the possible effect of interval asymmetry on the paraneter estimates.

*The root mean square error values appearing in the far-right column of Table 5.1 were
computed by (i) estimating. for a given listener and ISI. the 3(v) values for all v. along with
the parameters r, and y,. using the logarithmic transform of Eq. (5.5). and then (ii) fitting the
line having slope equal to the J(v) estimate and intercept equal to 10log y. — 3(v)10log r, to
the five data points corresponding to v.

“In presenting Figure 5.3. we are not suggesting that Eq. (5.5) may be extrapolated to
describe data obtained for referents of 80 to 130 dB SPL. Indeed. there is evidence that this

model would fail at such high intensities (e.g. Viemeister and Bacon. 1933).
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|

The results were not particularly illuminating for the parameters r, and y.. The
variation of ISI did have an impact on the estimated values of these parameters.
but for one listener {(CD). the relationship was nonmonotonic. and for the other
listener (LN). monotonicity was perfectly confounded with the ISI presentation
order (first 1000 ms. then 307 ms. then 100 ms). The variation of the 3(v) and
K (v) estimates with ISI will be examined in future work. For the present work.
it is important to note that there was a strong covariation between the J(v) and
K (v) estimates for all IST conditions. supporting the generality of the submodel

given by Eq. (5.5).

5.4 Discussion

It was argued in this paper that the value of the exponent in the power law
modeling the near-miss depends on the choice of discrimination criterion. First. a
mathematical result by Falmagne (1935. 1994) was recalled. The result states that
if the exponent is different from one for at least one value of the criterion. then the
exponent cannot be constant under changes in the criterion. This result —that
the value of the near-miss exponent depends on the definition of “just-noticeable’
in the estimation of r + A(r)-—may be a caution against regarding the exponent

as a critical aspect of neural coding of acoustic intensity (cf. Falmagne. 1983).
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Next. intensity discrimination data which demonstrate the predicted noncon-
stancy of the exponent were presented. For criteria ranging from 0.16 to 0.84 and
referent levels ranging from 40 to 80 dB SPL. it was observed that a power law
provides a good description of the data and that the estimates of the exponent
clearly decrease as the criterion increases. Moreover. a striking covariation of
the two parameters in this power law was observed. The parameters co-vary in
a way that suggests a submodel which has an important fixed-point property:
best-fitting lines (in log-log coordinates like those of Figures 5.1-5.4 and 5.6-5.7)
for different criteria meet at a common point. This point has an abscissa which
appears to correspond to a high intensity. and an ordinate close to zero.

These fixed point estimates and the form of the model specified by Eq. (5.5)
lead to the tempting interpretation that sound intensities are evaluated with re-
spect to a high intensity situated at or near the top of the normal range of hearing.
This interpretation is consistent with Parker and Schneider (1994). who propose
a subjective "gain control” mechanism which allows the listener to adjust amplifi-
cation (or attenuation) in the presence of softer (or louder) sounds for improved
discriminability. (See also Schneider and Parker. 1990). The idea of a high-level
fixed point is not new. as seen in data reported by Stevens (1974): plots of audi-
tory volume versus sound pressure. with tone frequency as a parameter. converge
at an abscissa value of about 140 dB SPL. This value is tentatively interpreted by
him as a “practical ceiling on the growth of the auditory experience per se™ (p.

162). Though the fixed-point estimates in the present study may not correspond
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to auditory ceilings. they do give additional evidence for the presence of high-
intensity standards in the subjective evaluations of sound intensities. Morcover.
the present data point to the possible ubiquity of the fixed-point property. which
has been observed in several other modalities and which may have additional
applications in audition (Stevens. 1974).

Deviations from Weber's law are known in the psvchoacoustics literature to
depend on such factors as the nature of the stimulus (frequency. intensity range.
presence of noise) and the hearing ability of the listener (normal-hearing ver-
sus hearing-impaired: see Schroder et al.. 1994). The present results give evi-
dence that some deviations also depend on the empirical interpretation of ‘just-
noticeable.” There are no doubt other experimental factors which determine the
extent of the deviation from Weber's law. We currently are developing quantita-
tive models to parse the effects of several of these factors. Aspects of the present
data--especially those which speak to the interplay among the exponent. the cri-
terion. interval asvmmetry, and interval bias—aid directly in the development of

these models.

5.5 Appendix

Table 5.2 shows the schedules for adjusting the level of the comparison tone for
cach of the twelve adaptive tracks used with each referent level in Experiment 1.
(Experiment 2 did not include criteria of 0.21 or 0.79.) For six of the tracks. the
comparison tone was in the second interval of the 2IFC task (Tvpe 1 trials). For
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Table 5.2: Schedule for the twelve experimental tracks used.

Trial Type 1 | Trial Type 2
Criterion v Tz ry re ry
0.16 4+ 1- - 4+
0.21 3+ 1- 1- 3+
0.29 2+ 1- - 2+
0.71 1+ 2- 2- 1+
0.79 1+ 3— 3- 1+
0.84 1+ 4— - 1+

the other six. the comparison tone was in the first interval (Type 2 trials). The
level of the comparison tone was contingent on the sequence of responses for the
track. Responses indicating that the first or second interval was judged louder
are represented by rpand ry,. respectively. Table entries represent the number of
consecutive responses needed to change the level of the comparison tone. with the
sign indicating whether the level was increased or decreased. For example. for the
track corresponding to Type | trials with criterion 0.16. the level was decreased
by one step following each r, response and increased by one step following four

consecutive 'y respounses.
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